Epileptic seizure prediction from multivariate EEG data using Multidimensional convolution network

Xiao-Hong Wei, Yao Wang, Zhen Zhang, Xiaojun Cao, Yi Zhou
{"title":"Epileptic seizure prediction from multivariate EEG data using Multidimensional convolution network","authors":"Xiao-Hong Wei, Yao Wang, Zhen Zhang, Xiaojun Cao, Yi Zhou","doi":"10.1109/CCISP55629.2022.9974592","DOIUrl":null,"url":null,"abstract":"Background: The ability to predict coming seizures will improve the quality of life of patients with epilepsy. Analysis of brain electrical activity using electroencephalogram (EEG) signals can be used to predict seizures.Method:Seizure prediction can be regarded as a binary classification problem between interictal and preictal EEG signals. In this work, we used multidimensional convolutional neural network models to predict seizures. Hospital multivariate EEG data is used in the study. We extracted 22 channels, 10 seconds EEG segments from the interictal and pre-ictal time durations and fed them to the proposed deep learning models.Result:The average accuracy of multidimensional deep network model for multi-channel EEG data is about 94%, the average sensitivity is 88.47%, and the average specificity is 89.75%. Conclusion:The normalized multivariable EEG signals are sent to the multidimensional convolution network to effectively predict seizures.","PeriodicalId":431851,"journal":{"name":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","volume":"300 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Communication, Image and Signal Processing (CCISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCISP55629.2022.9974592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: The ability to predict coming seizures will improve the quality of life of patients with epilepsy. Analysis of brain electrical activity using electroencephalogram (EEG) signals can be used to predict seizures.Method:Seizure prediction can be regarded as a binary classification problem between interictal and preictal EEG signals. In this work, we used multidimensional convolutional neural network models to predict seizures. Hospital multivariate EEG data is used in the study. We extracted 22 channels, 10 seconds EEG segments from the interictal and pre-ictal time durations and fed them to the proposed deep learning models.Result:The average accuracy of multidimensional deep network model for multi-channel EEG data is about 94%, the average sensitivity is 88.47%, and the average specificity is 89.75%. Conclusion:The normalized multivariable EEG signals are sent to the multidimensional convolution network to effectively predict seizures.
基于多维卷积网络的多变量脑电图数据癫痫发作预测
背景:预测癫痫发作的能力将提高癫痫患者的生活质量。利用脑电图(EEG)信号分析脑电活动可用于预测癫痫发作。方法:癫痫发作预测可视为脑电信号间期和前期的二分类问题。在这项工作中,我们使用多维卷积神经网络模型来预测癫痫发作。本研究采用医院多变量脑电图数据。我们从间隔和前间隔时间中提取了22个通道,10秒的EEG片段,并将其输入到所提出的深度学习模型中。结果:多维深度网络模型对多通道脑电数据的平均准确率约为94%,平均灵敏度为88.47%,平均特异性为89.75%。结论:将归一化的多变量脑电图信号送入多维卷积网络,可有效预测癫痫发作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信