Detection of Adulteration in Coconut Milk using Infrared Spectroscopy and Machine Learning

Mokhtar A. Al-Awadhi, R. Deshmukh
{"title":"Detection of Adulteration in Coconut Milk using Infrared Spectroscopy and Machine Learning","authors":"Mokhtar A. Al-Awadhi, R. Deshmukh","doi":"10.1109/MTICTI53925.2021.9664764","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a system for detecting adulteration in coconut milk, utilizing infrared spectroscopy. The machine learning-based proposed system comprises three phases: preprocessing, feature extraction, and classification. The first phase involves removing irrelevant data from coconut milk spectral signals. In the second phase, we employ the Linear Discriminant Analysis (LDA) algorithm for extracting the most discriminating features. In the third phase, we use the K-Nearest Neighbor (KNN) model to classify coconut milk samples into authentic or adulterated. We evaluate the performance of the proposed system using a public dataset comprising Fourier Transform Infrared (FTIR) spectral information of pure and contaminated coconut milk samples. Findings show that the proposed method successfully detects adulteration with a cross-validation accuracy of 93.33%.","PeriodicalId":218225,"journal":{"name":"2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference of Modern Trends in Information and Communication Technology Industry (MTICTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MTICTI53925.2021.9664764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we propose a system for detecting adulteration in coconut milk, utilizing infrared spectroscopy. The machine learning-based proposed system comprises three phases: preprocessing, feature extraction, and classification. The first phase involves removing irrelevant data from coconut milk spectral signals. In the second phase, we employ the Linear Discriminant Analysis (LDA) algorithm for extracting the most discriminating features. In the third phase, we use the K-Nearest Neighbor (KNN) model to classify coconut milk samples into authentic or adulterated. We evaluate the performance of the proposed system using a public dataset comprising Fourier Transform Infrared (FTIR) spectral information of pure and contaminated coconut milk samples. Findings show that the proposed method successfully detects adulteration with a cross-validation accuracy of 93.33%.
利用红外光谱和机器学习技术检测椰奶中的掺假成分
本文提出了一种利用红外光谱技术检测椰奶中掺假成分的方法。基于机器学习的系统包括预处理、特征提取和分类三个阶段。第一阶段包括从椰奶光谱信号中去除无关数据。在第二阶段,我们使用线性判别分析(LDA)算法来提取最具判别性的特征。在第三阶段,我们使用k -最近邻(KNN)模型将椰奶样本分为正品或掺假。我们使用包含纯椰奶和受污染椰奶样品的傅里叶变换红外(FTIR)光谱信息的公共数据集来评估所提出系统的性能。结果表明,该方法可成功检测掺假,交叉验证准确率为93.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信