Modeling Global and local Codon Bias with Deep Language Models

M. Fujimoto, P. Bodily, Cole A. Lyman, Andrew J. Jacobsen, Q. Snell, M. Clement
{"title":"Modeling Global and local Codon Bias with Deep Language Models","authors":"M. Fujimoto, P. Bodily, Cole A. Lyman, Andrew J. Jacobsen, Q. Snell, M. Clement","doi":"10.1109/BIBE.2017.00-63","DOIUrl":null,"url":null,"abstract":"Codon bias, the usage patterns of synonymous codons for encoding a protein sequence as nucleotides, is a biological phenomenon that is not fully understood. Several methods exist to represent the codon bias of an organism: codon adaptation index (CAI) [1], individual codon usage (ICU), hidden stop codons (HSC) [2] and codon context (CC) [3]. These methods are often employed in the optimization of heterologous gene expression to increase the accuracy and rate of translation. They, however, have many shortcomings as they dont take into account the local and global context of a gene. We present a method for modeling global and local codon bias through deep language models that is more robust than current methods by providing more contextual information and long-range dependencies.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Codon bias, the usage patterns of synonymous codons for encoding a protein sequence as nucleotides, is a biological phenomenon that is not fully understood. Several methods exist to represent the codon bias of an organism: codon adaptation index (CAI) [1], individual codon usage (ICU), hidden stop codons (HSC) [2] and codon context (CC) [3]. These methods are often employed in the optimization of heterologous gene expression to increase the accuracy and rate of translation. They, however, have many shortcomings as they dont take into account the local and global context of a gene. We present a method for modeling global and local codon bias through deep language models that is more robust than current methods by providing more contextual information and long-range dependencies.
用深度语言模型建模全局和局部密码子偏差
密码子偏差,即编码核苷酸蛋白质序列的同义密码子的使用模式,是一种尚未完全理解的生物学现象。目前存在几种表征生物体密码子偏好的方法:密码子适应指数(CAI)[1]、个体密码子使用(ICU)、隐藏停止密码子(HSC)[2]和密码子上下文(CC)[3]。这些方法常用于外源基因表达的优化,以提高翻译的准确性和翻译率。然而,它们有许多缺点,因为它们没有考虑到基因的本地和全球背景。我们提出了一种通过深度语言模型来建模全局和局部密码子偏差的方法,该方法通过提供更多的上下文信息和远程依赖关系,比现有方法更具鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信