Sliding Mode Self-Tuned Single Neuron PID Controller for Power System Stabilizer

M. Ghany, Mohamed A. Shamseldin
{"title":"Sliding Mode Self-Tuned Single Neuron PID Controller for Power System Stabilizer","authors":"M. Ghany, Mohamed A. Shamseldin","doi":"10.37394/23205.2021.20.34","DOIUrl":null,"url":null,"abstract":"In this paper, a modified technique based on the combination of the Single Neuron PID (SNPID), as the main controller and Sliding Mode Control (SMC), as an adaptation technique, to design an optimized self-tuned for SNPID controller that may overcome difficulties faced when a change in system operating points occurs. The proposed approach has been implemented as a power system stabilizer (PSS) for a synchronous generator connected to an infinite bus. The Flower Pollination (FP) optimization is based on an appropriate objective function. To demonstrate the effectiveness of the combination obtained controllers, PSS, is tested under different operating conditions. The combination controllers are shown through uncertainties system parameters changes under different disturbances. The results show the ability of the suggested controllers to enhance well the system performances","PeriodicalId":332148,"journal":{"name":"WSEAS TRANSACTIONS ON COMPUTERS","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON COMPUTERS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/23205.2021.20.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a modified technique based on the combination of the Single Neuron PID (SNPID), as the main controller and Sliding Mode Control (SMC), as an adaptation technique, to design an optimized self-tuned for SNPID controller that may overcome difficulties faced when a change in system operating points occurs. The proposed approach has been implemented as a power system stabilizer (PSS) for a synchronous generator connected to an infinite bus. The Flower Pollination (FP) optimization is based on an appropriate objective function. To demonstrate the effectiveness of the combination obtained controllers, PSS, is tested under different operating conditions. The combination controllers are shown through uncertainties system parameters changes under different disturbances. The results show the ability of the suggested controllers to enhance well the system performances
电力系统稳定器滑模自整定单神经元PID控制器
本文将单神经元PID (SNPID)作为主控制器与滑模控制(SMC)作为自适应技术相结合,设计了一种优化的自整定SNPID控制器,以克服系统工作点发生变化时所面临的困难。该方法已应用于连接无限母线的同步发电机的电力系统稳定器(PSS)。传粉优化是建立在适当的目标函数基础上的。为了证明组合获得的控制器的有效性,PSS在不同的操作条件下进行了测试。通过不确定性系统参数在不同扰动下的变化来展示组合控制器。结果表明,所提出的控制器能够很好地提高系统的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信