Optical detection of breaks and short circuits on the layouts of printed circuit boards using CNN

P. Szolgay, K. Tomordi
{"title":"Optical detection of breaks and short circuits on the layouts of printed circuit boards using CNN","authors":"P. Szolgay, K. Tomordi","doi":"10.1109/CNNA.1996.566498","DOIUrl":null,"url":null,"abstract":"The printed circuit board layout inspection methods are mostly based on local geometric information, therefore it is well suited to the cellular neural network (CNN) paradigm. Two layout errors are detected here namely, the breaks in the wires and some kind of short circuits. The designed analogic algorithms to solve the problems above were tested on real life examples using an experimental system based on our CNN-HAC1M digital multiprocessor add-on-board, with 1 million cell space and 2.0 /spl mu/s/cell/iteration speed.","PeriodicalId":222524,"journal":{"name":"1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 Fourth IEEE International Workshop on Cellular Neural Networks and their Applications Proceedings (CNNA-96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1996.566498","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The printed circuit board layout inspection methods are mostly based on local geometric information, therefore it is well suited to the cellular neural network (CNN) paradigm. Two layout errors are detected here namely, the breaks in the wires and some kind of short circuits. The designed analogic algorithms to solve the problems above were tested on real life examples using an experimental system based on our CNN-HAC1M digital multiprocessor add-on-board, with 1 million cell space and 2.0 /spl mu/s/cell/iteration speed.
利用CNN对印刷电路板布局上的断路和短路进行光学检测
印刷电路板布局检测方法大多基于局部几何信息,因此非常适合于细胞神经网络(CNN)范式。这里检测到两种布局错误,即电线断线和某种形式的短路。设计的模拟算法在基于CNN-HAC1M数字多处理器板载的实验系统上进行了实际实例测试,该实验系统具有100万单元空间和2.0 /spl mu/s/cell/迭代速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信