Simulation Validation of Phase-Diverse Speckle Imaging

R. Paxman, J. H. Seldin
{"title":"Simulation Validation of Phase-Diverse Speckle Imaging","authors":"R. Paxman, J. H. Seldin","doi":"10.1364/srs.1995.rwb2","DOIUrl":null,"url":null,"abstract":"Astronomers have long known that the resolution in ground-based astronomy is usually limited by aberrations introduced by the atmosphere. Over the years, researchers have developed a variety of clever pre- and post-detection approaches for correcting these effects, each with its own merits and regimes of operation. These approaches include stellar speckle imaging, deconvolution from wavefront sensing, and adaptive optics. We have been investigating a novel data-collection and processing approach for combating the effects of atmospheric seeing called phase-diverse speckle imaging.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1995.rwb2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Astronomers have long known that the resolution in ground-based astronomy is usually limited by aberrations introduced by the atmosphere. Over the years, researchers have developed a variety of clever pre- and post-detection approaches for correcting these effects, each with its own merits and regimes of operation. These approaches include stellar speckle imaging, deconvolution from wavefront sensing, and adaptive optics. We have been investigating a novel data-collection and processing approach for combating the effects of atmospheric seeing called phase-diverse speckle imaging.
相位变化散斑成像的仿真验证
天文学家早就知道,地面天文学的分辨率通常受到大气引入的像差的限制。多年来,研究人员开发了各种巧妙的检测前和检测后方法来纠正这些影响,每种方法都有自己的优点和操作机制。这些方法包括恒星散斑成像、波前传感的反褶积和自适应光学。我们一直在研究一种新的数据收集和处理方法,以对抗大气视觉的影响,称为相位变化散斑成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信