The Proof of the Fermat-Beal Theorem

Leszek W. Guła
{"title":"The Proof of the Fermat-Beal Theorem","authors":"Leszek W. Guła","doi":"10.18052/WWW.SCIPRESS.COM/BMSA.11.4","DOIUrl":null,"url":null,"abstract":"It is easy to see that if then either are co-prime or, if not co-prime that any common factor could be divided out of each term until the equation existed with co-prime bases. (Co-prime is synonymous with pairwise relatively prime and means that in a given set of numbers, no two of the numbers share a common factor). You could then restate FLT by saying that is impossible with co-prime bases. (Yes, it is also impossible without co-prime bases, but non co-prime bases can only exist as a consequence of co-prime bases). II. THE FERMAT-BEAL THEOREM For all the equation","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"308 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/WWW.SCIPRESS.COM/BMSA.11.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is easy to see that if then either are co-prime or, if not co-prime that any common factor could be divided out of each term until the equation existed with co-prime bases. (Co-prime is synonymous with pairwise relatively prime and means that in a given set of numbers, no two of the numbers share a common factor). You could then restate FLT by saying that is impossible with co-prime bases. (Yes, it is also impossible without co-prime bases, but non co-prime bases can only exist as a consequence of co-prime bases). II. THE FERMAT-BEAL THEOREM For all the equation
费马-比尔定理的证明
很容易看出,如果它们是共素数,或者如果不是共素数,则每一项都可以被除出任何公因数,直到方程存在共素数底。(协素数是两两相对素数的同义词,意思是在给定的一组数字中,没有两个数字具有公因数)。然后你可以重申FLT说这对于共质基是不可能的。(是的,没有共质基也是不可能的,但非共质基只能作为共质基的结果而存在)。2所有方程的费马-比尔定理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信