Analysis and Visualisation of Time Series Data on Networks with Pathpy

Jürgen Hackl, Ingo Scholtes, L. V. Petrovic, Vincenzo Perri, Luca Verginer, Christoph Gote
{"title":"Analysis and Visualisation of Time Series Data on Networks with Pathpy","authors":"Jürgen Hackl, Ingo Scholtes, L. V. Petrovic, Vincenzo Perri, Luca Verginer, Christoph Gote","doi":"10.1145/3442442.3452052","DOIUrl":null,"url":null,"abstract":"The Open Source software package pathpy, available at https://www.pathpy.net, implements statistical techniques to learn optimal graphical models for the causal topology generated by paths in time-series data. Operationalizing Occam’s razor, these models balance model complexity with explanatory power for empirically observed paths in relational time series. Standard network analysis is justified if the inferred optimal model is a first-order network model. Optimal models with orders larger than one indicate higher-order dependencies and can be used to improve the analysis of dynamical processes, node centralities and clusters.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3452052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The Open Source software package pathpy, available at https://www.pathpy.net, implements statistical techniques to learn optimal graphical models for the causal topology generated by paths in time-series data. Operationalizing Occam’s razor, these models balance model complexity with explanatory power for empirically observed paths in relational time series. Standard network analysis is justified if the inferred optimal model is a first-order network model. Optimal models with orders larger than one indicate higher-order dependencies and can be used to improve the analysis of dynamical processes, node centralities and clusters.
基于路径的网络时间序列数据分析与可视化
开源软件包pathpy(可在https://www.pathpy.net获得)实现了统计技术,以学习由时间序列数据中的路径生成的因果拓扑的最佳图形模型。运用Occam剃刀,这些模型平衡了模型的复杂性和对关系时间序列中经验观察路径的解释力。如果推断的最优模型是一阶网络模型,则标准网络分析是合理的。阶数大于1的最优模型表示高阶依赖关系,可用于改进动态过程、节点中心性和聚类的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信