Spurious regression in nonparametric models

Songchen Li
{"title":"Spurious regression in nonparametric models","authors":"Songchen Li","doi":"10.1109/FSKD.2012.6234284","DOIUrl":null,"url":null,"abstract":"This paper develops the asymptotic theory for the Nadaraya-Watson kernel estimator and local polynomial estimator when two independently integrated processes are used in a nonlinear regression. It is shown that the Nadaraya-Watson kernel estimator and the local polynomial estimator do not possess limiting distributions in this context but actually diverge at rate n1/2 as the sample size n→∞, and this is slower than that of parameters in linear regression. In spite of the difference in the rate of divergence between the parametric and nonparametric cases, they all can induce spurious regression.","PeriodicalId":337941,"journal":{"name":"International Conference on Fuzzy Systems and Knowledge Discovery","volume":"347 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2012.6234284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops the asymptotic theory for the Nadaraya-Watson kernel estimator and local polynomial estimator when two independently integrated processes are used in a nonlinear regression. It is shown that the Nadaraya-Watson kernel estimator and the local polynomial estimator do not possess limiting distributions in this context but actually diverge at rate n1/2 as the sample size n→∞, and this is slower than that of parameters in linear regression. In spite of the difference in the rate of divergence between the parametric and nonparametric cases, they all can induce spurious regression.
非参数模型中的伪回归
研究了非线性回归中两个独立积分过程的Nadaraya-Watson核估计量和局部多项式估计量的渐近理论。结果表明,在这种情况下,Nadaraya-Watson核估计量和局部多项式估计量不具有极限分布,而是在样本容量n→∞时以n /2的速率发散,并且比线性回归中参数的发散速度慢。尽管参数和非参数情况的散度率不同,但它们都可能导致伪回归。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信