Information Processing Systems in UAV Based on Bayesian Filtering in Conditions of Uncertainty

Rinat Galiautdinov
{"title":"Information Processing Systems in UAV Based on Bayesian Filtering in Conditions of Uncertainty","authors":"Rinat Galiautdinov","doi":"10.4018/IJSSCI.2020100103","DOIUrl":null,"url":null,"abstract":"In this article, the author considers the possibility of applying modern IT technologies to implement information processing algorithms in UAV motion control system. Filtration of coordinates and motion parameters of objects under a priori uncertainty is carried out using nonlinear adaptive filters: Kalman and Bayesian filters. The author considers numerical methods for digital implementation of nonlinear filters based on the convolution of functions, the possibilities of neural networks and fuzzy logic for solving the problems of tracking UAV objects (or missiles), the math model of dynamics, the features of the practical implementation of state estimation algorithms in the frame of added additional degrees of freedom. The considered algorithms are oriented on solving the problems in real time using parallel and cloud computing.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSSCI.2020100103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this article, the author considers the possibility of applying modern IT technologies to implement information processing algorithms in UAV motion control system. Filtration of coordinates and motion parameters of objects under a priori uncertainty is carried out using nonlinear adaptive filters: Kalman and Bayesian filters. The author considers numerical methods for digital implementation of nonlinear filters based on the convolution of functions, the possibilities of neural networks and fuzzy logic for solving the problems of tracking UAV objects (or missiles), the math model of dynamics, the features of the practical implementation of state estimation algorithms in the frame of added additional degrees of freedom. The considered algorithms are oriented on solving the problems in real time using parallel and cloud computing.
不确定条件下基于贝叶斯滤波的无人机信息处理系统
本文考虑了应用现代IT技术实现无人机运动控制系统中信息处理算法的可能性。利用非线性自适应滤波器:卡尔曼滤波器和贝叶斯滤波器对具有先验不确定性的物体的坐标和运动参数进行滤波。作者考虑了基于函数卷积的非线性滤波器数字实现的数值方法、解决无人机目标(或导弹)跟踪问题的神经网络和模糊逻辑的可能性、动力学数学模型、在附加附加自由度框架下状态估计算法实际实现的特点。所考虑的算法是面向使用并行和云计算实时解决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信