Ultra-wideband frequency chirp signal generation by using high-speed optical frequency control with optical single-sideband modulation technique

T. Kawanishi, T. Sakamoto, M. Izutsu
{"title":"Ultra-wideband frequency chirp signal generation by using high-speed optical frequency control with optical single-sideband modulation technique","authors":"T. Kawanishi, T. Sakamoto, M. Izutsu","doi":"10.1109/MWP.2006.346554","DOIUrl":null,"url":null,"abstract":"By using rapid optical frequency sweep technique, we demonstrated ultra-wideband frequency chirp millimeter-wave signal generation whose bandwidth was 6.4 GHz. Ultra fast and precise optical frequency sweep was achieved by using single-sideband modulation, where the theoretical limit of resolution due to the uncertainty between time and frequency was almost obtained, ultra-wideband frequency chirp signals from 9.6 GHz to 16 GHz, which were generated by using a computer controlled arbitrary waveform generator and a wideband frequency multiplier, were fed to an optical single-single sideband modulator consisting of two sub Mach-Zehnder interferometers","PeriodicalId":305579,"journal":{"name":"2006 International Topical Meeting on Microwave Photonics","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Topical Meeting on Microwave Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWP.2006.346554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

By using rapid optical frequency sweep technique, we demonstrated ultra-wideband frequency chirp millimeter-wave signal generation whose bandwidth was 6.4 GHz. Ultra fast and precise optical frequency sweep was achieved by using single-sideband modulation, where the theoretical limit of resolution due to the uncertainty between time and frequency was almost obtained, ultra-wideband frequency chirp signals from 9.6 GHz to 16 GHz, which were generated by using a computer controlled arbitrary waveform generator and a wideband frequency multiplier, were fed to an optical single-single sideband modulator consisting of two sub Mach-Zehnder interferometers
利用光单边带调制技术实现高速光频控制,产生超宽带频率啁啾信号
利用快速光扫频技术,实现了带宽为6.4 GHz的超宽带频率啁啾毫米波信号的产生。利用计算机控制的任意波形发生器和宽带倍频器产生9.6 GHz ~ 16 GHz的超宽带频率啁啾信号,并将其送入由两个亚马赫-曾德尔干涉仪组成的单-单边带光调制器,实现了超快速、高精度的光扫频,几乎满足了时间和频率不确定性的理论分辨率限制
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信