{"title":"Dynamic energy management with scenario-based robust MPC","authors":"Matt Wytock, N. Moehle, Stephen P. Boyd","doi":"10.23919/ACC.2017.7963253","DOIUrl":null,"url":null,"abstract":"We present a simple, practical method for managing the energy produced and consumed by a network of devices. Our method is based on (convex) model predictive control. We handle uncertainty using a robust model predictive control formulation that considers a finite number of possible scenarios. A key attribute of our formulation is the encapsulation of device details, an idea naturally implemented with object-oriented programming. We introduce an open-source Python library implementing our method and demonstrate its use in planning and control at various scales in the electrical grid: managing a smart home, shared charging of electric vehicles, and integrating a wind farm into the transmission network.","PeriodicalId":422926,"journal":{"name":"2017 American Control Conference (ACC)","volume":"2011 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC.2017.7963253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
We present a simple, practical method for managing the energy produced and consumed by a network of devices. Our method is based on (convex) model predictive control. We handle uncertainty using a robust model predictive control formulation that considers a finite number of possible scenarios. A key attribute of our formulation is the encapsulation of device details, an idea naturally implemented with object-oriented programming. We introduce an open-source Python library implementing our method and demonstrate its use in planning and control at various scales in the electrical grid: managing a smart home, shared charging of electric vehicles, and integrating a wind farm into the transmission network.