Empirically Analyzing the Necessity of EICMM Ranking by Clustering

Hui Ma, Yiping Yang, Yan Zhu, Mingxia Zhao
{"title":"Empirically Analyzing the Necessity of EICMM Ranking by Clustering","authors":"Hui Ma, Yiping Yang, Yan Zhu, Mingxia Zhao","doi":"10.1109/CSO.2010.209","DOIUrl":null,"url":null,"abstract":"In this paper, the necessity of ranking of the enterprise’s informatization capacity maturity is researched on the basis of EICMM (Enterprise Informatization Capacity Maturity Model). Based on the EICMM, we adopt the proper method (Cluster Analytical Method) for the empirical research, commence from the evaluated index system, design the questionnaires and collect the related data of informatization, and handle and analyze the collated findings of the surveys and questionnaires by means of CABOSFV (Clustering Algorithm Based on Sparse Feature Vector) algorithm and explain the holds of the assumption of stratification and ranking of EICMM by resorting to the conclusion of such empirical analysis.","PeriodicalId":427481,"journal":{"name":"2010 Third International Joint Conference on Computational Science and Optimization","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Third International Joint Conference on Computational Science and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSO.2010.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the necessity of ranking of the enterprise’s informatization capacity maturity is researched on the basis of EICMM (Enterprise Informatization Capacity Maturity Model). Based on the EICMM, we adopt the proper method (Cluster Analytical Method) for the empirical research, commence from the evaluated index system, design the questionnaires and collect the related data of informatization, and handle and analyze the collated findings of the surveys and questionnaires by means of CABOSFV (Clustering Algorithm Based on Sparse Feature Vector) algorithm and explain the holds of the assumption of stratification and ranking of EICMM by resorting to the conclusion of such empirical analysis.
实证分析EICMM聚类排序的必要性
本文在EICMM(企业信息化能力成熟度模型)的基础上,研究了对企业信息化能力成熟度进行排序的必要性。在EICMM的基础上,采用适当的方法(聚类分析法)进行实证研究,从评价指标体系入手,设计问卷,收集信息化的相关数据;利用CABOSFV (Clustering Algorithm Based on Sparse Feature Vector)算法对调查问卷的整理结果进行处理和分析,并根据实证分析的结论解释EICMM分层和排序假设的成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信