Triplet Temporal-based Video Recognition with Multiview for Temporal Action Localization

Huy Duong Le, Minh Quan Vu, Manh Tung Tran, Nguyen Van Phuc
{"title":"Triplet Temporal-based Video Recognition with Multiview for Temporal Action Localization","authors":"Huy Duong Le, Minh Quan Vu, Manh Tung Tran, Nguyen Van Phuc","doi":"10.1109/CVPRW59228.2023.00573","DOIUrl":null,"url":null,"abstract":"Temporal action localization (TAL) in untrimmed videos recently emerged as a crucial research topic, which has been applied in various applications such as surveillance, crowd monitoring, and driver distraction recognition. Most modern approaches in TAL divide this problem into two parts: i) feature extraction for action recognition; and ii) temporal boundary for action localization. In this study, we focus on improving the performance of the TAL task by exploiting the feature extraction effectively. Specifically, we present a temporal triplet algorithm in order to enhance temporal density-dependence information for the input video clips. Moreover, the multiview fusion framework is taken into account for enriching action representation. For the evaluation, we conduct the proposed method on the 2023 AI City Challenge Dataset. Accordingly, our method achieves competitive results and belongs to the top public leaderboard in Track 3 of the Challenge.","PeriodicalId":355438,"journal":{"name":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW59228.2023.00573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Temporal action localization (TAL) in untrimmed videos recently emerged as a crucial research topic, which has been applied in various applications such as surveillance, crowd monitoring, and driver distraction recognition. Most modern approaches in TAL divide this problem into two parts: i) feature extraction for action recognition; and ii) temporal boundary for action localization. In this study, we focus on improving the performance of the TAL task by exploiting the feature extraction effectively. Specifically, we present a temporal triplet algorithm in order to enhance temporal density-dependence information for the input video clips. Moreover, the multiview fusion framework is taken into account for enriching action representation. For the evaluation, we conduct the proposed method on the 2023 AI City Challenge Dataset. Accordingly, our method achieves competitive results and belongs to the top public leaderboard in Track 3 of the Challenge.
基于时间的多视点三联体视频识别,用于时间动作定位
近年来,未修剪视频中的时间动作定位(TAL)已成为一个重要的研究课题,在监控、人群监测和驾驶员分心识别等领域得到了广泛的应用。大多数TAL中的现代方法将该问题分为两部分:i)用于动作识别的特征提取;ii)动作定位的时间边界。在本研究中,我们着重于通过有效地利用特征提取来提高TAL任务的性能。具体来说,我们提出了一种时间三元组算法,以增强输入视频片段的时间密度依赖信息。此外,还考虑了多视图融合框架,以丰富动作表示。为了进行评估,我们在2023年AI城市挑战数据集上执行了所提出的方法。因此,我们的方法取得了有竞争力的结果,并在赛道3的公共排行榜上名列前茅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信