{"title":"Optimal information dispersal for reliable communication in computer networks","authors":"Hung-Min Sun, S. Shieh","doi":"10.1109/ICPADS.1994.590356","DOIUrl":null,"url":null,"abstract":"In an (m, n) Information Dispersal Scheme (IDS), the sender node decomposes a message M of length L into n pieces S/sub i/, 1/spl les/i/spl les/n, each of length L/m, such that any m pieces collected by the receiver node over different paths suffice for reconstructing M. Because of variations of network traffic, the number n of available vertex-disjoint paths for the transmission from the sender node to the receiver node may vary in time. It is very difficult to determine the best n and m which gives the highest communication reliability, when given the maximum number of available disjoint paths and an upper bound for the information expansion rate (n/m). In this research, we discovered several interesting features of (m, n) IDSs which can help reduce the complexity for computing the highest communication reliability. From these findings, we propose a method for determining the optimal IDS.","PeriodicalId":154429,"journal":{"name":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1994.590356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In an (m, n) Information Dispersal Scheme (IDS), the sender node decomposes a message M of length L into n pieces S/sub i/, 1/spl les/i/spl les/n, each of length L/m, such that any m pieces collected by the receiver node over different paths suffice for reconstructing M. Because of variations of network traffic, the number n of available vertex-disjoint paths for the transmission from the sender node to the receiver node may vary in time. It is very difficult to determine the best n and m which gives the highest communication reliability, when given the maximum number of available disjoint paths and an upper bound for the information expansion rate (n/m). In this research, we discovered several interesting features of (m, n) IDSs which can help reduce the complexity for computing the highest communication reliability. From these findings, we propose a method for determining the optimal IDS.