James F. Kurose, D. McLaughlin, D. Pepyne, B. Philips
{"title":"Short wavelength technology and the potential for distributed networks of small radar systems","authors":"James F. Kurose, D. McLaughlin, D. Pepyne, B. Philips","doi":"10.1175/2009BAMS2507.1","DOIUrl":null,"url":null,"abstract":"The NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is advancing a new approach to radar network design based on dense networks of short-range radars. The center's concept is to deploy small radars atop communication towers, rooftops, and other elements of the infrastructure as a means to comprehensively map winds, rainfall, and other atmospheric and airborne objects throughout the atmosphere with resolution, low-altitude coverage, Doppler wind vector measurement, and other capabilities that are substantially beyond the current state-of-the-art. The technology has the potential to supplement - or perhaps replace - the large long-range civil infrastructure radars in use today.","PeriodicalId":346898,"journal":{"name":"2009 IEEE Radar Conference","volume":"11 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"287","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1175/2009BAMS2507.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 287
Abstract
The NSF Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) is advancing a new approach to radar network design based on dense networks of short-range radars. The center's concept is to deploy small radars atop communication towers, rooftops, and other elements of the infrastructure as a means to comprehensively map winds, rainfall, and other atmospheric and airborne objects throughout the atmosphere with resolution, low-altitude coverage, Doppler wind vector measurement, and other capabilities that are substantially beyond the current state-of-the-art. The technology has the potential to supplement - or perhaps replace - the large long-range civil infrastructure radars in use today.