{"title":"Remaining Useful Life Prediction of Aero-Engine Based on Transformer with Tendency Retainment","authors":"Zhi Zhai, Jingcheng Wen, Fujin Wang, Zhibin Zhao, Yanjie Guo, Xuefeng Chen","doi":"10.1109/ICSMD57530.2022.10058242","DOIUrl":null,"url":null,"abstract":"One of the essential technologies for prognostics and health management of aero-engines is remaining useful life (RUL) prediction. Many deep learning models have recently been presented to extract features adaptively and forecast RUL end-to-end. However, it is still a challenging task to model data of long-life cycles and retain the degradation information when extracting features. To overcome the problem, we present a Transformer-based method with tendency retainment to predict RUL. Convolutional neural network is first used to fuse data from different sensors. Then, the long-life cycle data is encoded by Transformer encoder followed by long short-term memory neural network to extract features and finally RUL is predicted. Moreover, a tendency retainment module is designed based on contrastive learning to maintain the degradation information. The proposed method's performance is validated using NASA's C-MAPSS aero-engine dataset. The experimental results reveal that the proposed method outperforms other state-of-the-art methods in terms of prediction accuracy.","PeriodicalId":396735,"journal":{"name":"2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD)","volume":"29 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMD57530.2022.10058242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
One of the essential technologies for prognostics and health management of aero-engines is remaining useful life (RUL) prediction. Many deep learning models have recently been presented to extract features adaptively and forecast RUL end-to-end. However, it is still a challenging task to model data of long-life cycles and retain the degradation information when extracting features. To overcome the problem, we present a Transformer-based method with tendency retainment to predict RUL. Convolutional neural network is first used to fuse data from different sensors. Then, the long-life cycle data is encoded by Transformer encoder followed by long short-term memory neural network to extract features and finally RUL is predicted. Moreover, a tendency retainment module is designed based on contrastive learning to maintain the degradation information. The proposed method's performance is validated using NASA's C-MAPSS aero-engine dataset. The experimental results reveal that the proposed method outperforms other state-of-the-art methods in terms of prediction accuracy.