Point to face shortest paths in simple polytopes with applications in structural proteomics

O. Daescu, Y. Cheung
{"title":"Point to face shortest paths in simple polytopes with applications in structural proteomics","authors":"O. Daescu, Y. Cheung","doi":"10.1109/BIBMW.2007.4425394","DOIUrl":null,"url":null,"abstract":"We study the following problem. Given a simple polytope S in R3, with a total of n edges, and a query point s on S, find a shortest path from s to the boundary of the convex hull, CH(S), of S, that does not go through the interior of S. The problem appears in structural proteomics in the computation of shape descriptors for measuring the depth of a point on a surface. We present an algorithm with running time O(n3(lambda(n) log(n/epsiv)/epsiv4 + log(np) log(n log p))), that can find a path from s to the boundary of CH(S) that has length at most (1 + epsiv) times the length of a shortest path from s to the boundary of CH(S).","PeriodicalId":260286,"journal":{"name":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":"13 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2007.4425394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following problem. Given a simple polytope S in R3, with a total of n edges, and a query point s on S, find a shortest path from s to the boundary of the convex hull, CH(S), of S, that does not go through the interior of S. The problem appears in structural proteomics in the computation of shape descriptors for measuring the depth of a point on a surface. We present an algorithm with running time O(n3(lambda(n) log(n/epsiv)/epsiv4 + log(np) log(n log p))), that can find a path from s to the boundary of CH(S) that has length at most (1 + epsiv) times the length of a shortest path from s to the boundary of CH(S).
在结构蛋白质组学中应用简单多面体的指向面最短路径
我们研究下面的问题。给定R3中的一个简单多面体S,总共有n条边,S上有一个查询点S,找到一条从S到S的凸壳边界CH(S)的最短路径,该路径不经过S的内部。在结构蛋白质组学中,计算用于测量表面上点的深度的形状描述符是一个问题。我们提出了一个运行时间为O(n3(lambda(n) log(n/epsiv)/epsiv4 + log(np) log(n log p)))的算法,该算法可以找到从s到CH(s)边界的路径,该路径的长度最多为s到CH(s)边界的最短路径长度的(1 + epsiv)倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信