Incremental estimation without specifying a-priori covariance matrices for the novel parameters

C. Beder, Richard Steffen
{"title":"Incremental estimation without specifying a-priori covariance matrices for the novel parameters","authors":"C. Beder, Richard Steffen","doi":"10.1109/CVPRW.2008.4563139","DOIUrl":null,"url":null,"abstract":"We will present a novel incremental algorithm for the task of online least-squares estimation. Our approach aims at combining the accuracy of least-squares estimation and the fast computation of recursive estimation techniques like the Kalman filter. Analyzing the structure of least-squares estimation we devise a novel incremental algorithm, which is able to introduce new unknown parameters and observations into an estimation simultaneously and is equivalent to the optimal overall estimation in case of linear models. It constitutes a direct generalization of the well-known Kalman filter allowing to augment the state vector inside the update step. In contrast to classical recursive estimation techniques no artificial initial covariance for the new unknown parameters is required here. We will show, how this new algorithm allows more flexible parameter estimation schemes especially in the case of scene and motion reconstruction from image sequences. Since optimality is not guaranteed in the non-linear case we will also compare our incremental estimation scheme to the optimal bundle adjustment on a real image sequence. It will be shown that competitive results are achievable using the proposed technique.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We will present a novel incremental algorithm for the task of online least-squares estimation. Our approach aims at combining the accuracy of least-squares estimation and the fast computation of recursive estimation techniques like the Kalman filter. Analyzing the structure of least-squares estimation we devise a novel incremental algorithm, which is able to introduce new unknown parameters and observations into an estimation simultaneously and is equivalent to the optimal overall estimation in case of linear models. It constitutes a direct generalization of the well-known Kalman filter allowing to augment the state vector inside the update step. In contrast to classical recursive estimation techniques no artificial initial covariance for the new unknown parameters is required here. We will show, how this new algorithm allows more flexible parameter estimation schemes especially in the case of scene and motion reconstruction from image sequences. Since optimality is not guaranteed in the non-linear case we will also compare our incremental estimation scheme to the optimal bundle adjustment on a real image sequence. It will be shown that competitive results are achievable using the proposed technique.
增量估计不指定先验协方差矩阵的新参数
我们将提出一种新的增量算法用于在线最小二乘估计。我们的方法旨在将最小二乘估计的准确性与卡尔曼滤波等递归估计技术的快速计算相结合。在分析最小二乘估计结构的基础上,提出了一种新的增量估计算法,该算法可以同时将新的未知参数和观测值引入到估计中,相当于线性模型的最优整体估计。它构成了众所周知的卡尔曼滤波的直接推广,允许在更新步骤中增加状态向量。与经典的递归估计技术不同,这里不需要对新的未知参数进行人工初始协方差。我们将展示,这种新算法如何允许更灵活的参数估计方案,特别是在从图像序列中重建场景和运动的情况下。由于在非线性情况下不能保证最优性,我们还将增量估计方案与真实图像序列上的最优束调整进行比较。这将表明,竞争结果是可以实现使用所提出的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信