E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd
{"title":"Real Time Localization and 3D Reconstruction","authors":"E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, P. Sayd","doi":"10.1109/CVPR.2006.236","DOIUrl":null,"url":null,"abstract":"In this paper we describe a method that estimates the motion of a calibrated camera (settled on an experimental vehicle) and the tridimensional geometry of the environment. The only data used is a video input. In fact, interest points are tracked and matched between frames at video rate. Robust estimates of the camera motion are computed in real-time, key-frames are selected and permit the features 3D reconstruction. The algorithm is particularly appropriate to the reconstruction of long images sequences thanks to the introduction of a fast and local bundle adjustment method that ensures both good accuracy and consistency of the estimated camera poses along the sequence. It also largely reduces computational complexity compared to a global bundle adjustment. Experiments on real data were carried out to evaluate speed and robustness of the method for a sequence of about one kilometer long. Results are also compared to the ground truth measured with a differential GPS.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"443","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 443
Abstract
In this paper we describe a method that estimates the motion of a calibrated camera (settled on an experimental vehicle) and the tridimensional geometry of the environment. The only data used is a video input. In fact, interest points are tracked and matched between frames at video rate. Robust estimates of the camera motion are computed in real-time, key-frames are selected and permit the features 3D reconstruction. The algorithm is particularly appropriate to the reconstruction of long images sequences thanks to the introduction of a fast and local bundle adjustment method that ensures both good accuracy and consistency of the estimated camera poses along the sequence. It also largely reduces computational complexity compared to a global bundle adjustment. Experiments on real data were carried out to evaluate speed and robustness of the method for a sequence of about one kilometer long. Results are also compared to the ground truth measured with a differential GPS.