On the Consistency of Bayesian Variable Selection for High Dimensional Linear Models

Shuyun Wang, Y. Luan
{"title":"On the Consistency of Bayesian Variable Selection for High Dimensional Linear Models","authors":"Shuyun Wang, Y. Luan","doi":"10.1109/CINC.2009.189","DOIUrl":null,"url":null,"abstract":"First, good performance of Bayesian variable selection (BVS for short) in a variety of applications is introduced. Then, we will give a theoretical explanation why BVS works so well in linear models. We assume the true regression coefficients vector of the linear model is sparsity, in a sense that some regression coefficients are bounded from zero while the rest are exactly zero. In this case, under some conditions, BVS will show it can select the true model by means of giving a consistent estimate of the true regression coefficients vector.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

First, good performance of Bayesian variable selection (BVS for short) in a variety of applications is introduced. Then, we will give a theoretical explanation why BVS works so well in linear models. We assume the true regression coefficients vector of the linear model is sparsity, in a sense that some regression coefficients are bounded from zero while the rest are exactly zero. In this case, under some conditions, BVS will show it can select the true model by means of giving a consistent estimate of the true regression coefficients vector.
高维线性模型贝叶斯变量选择的一致性研究
首先,介绍了贝叶斯变量选择在各种应用中的良好性能。然后,我们将从理论上解释为什么BVS在线性模型中如此有效。我们假设线性模型的真正回归系数向量是稀疏性的,从某种意义上说,一些回归系数从零有界,而其他回归系数则完全为零。在这种情况下,在某些条件下,BVS将通过给出真实回归系数向量的一致估计来显示它可以选择真实模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信