COVID19 Chest X-Ray Classification with Simple Convolutional Neural Network

Chenqi Li, Maggie Wang, Grace Wu, Khadija Rana, Nipon Charoenkitkarn, Jonathan H. Chan
{"title":"COVID19 Chest X-Ray Classification with Simple Convolutional Neural Network","authors":"Chenqi Li, Maggie Wang, Grace Wu, Khadija Rana, Nipon Charoenkitkarn, Jonathan H. Chan","doi":"10.1145/3429210.3429216","DOIUrl":null,"url":null,"abstract":"COVID-19 outbreak calls for the urgent need of quick, accurate, and accessible methods for detection. Convolutional neural networks applied to chest x-ray images is a promising solution; however, x-ray device configurations vary and data quality across different datasets are inconsistent. This leads to overfitting on a particular set of training data. This paper aims to explore methods to mitigate overfitting.","PeriodicalId":164790,"journal":{"name":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429210.3429216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

COVID-19 outbreak calls for the urgent need of quick, accurate, and accessible methods for detection. Convolutional neural networks applied to chest x-ray images is a promising solution; however, x-ray device configurations vary and data quality across different datasets are inconsistent. This leads to overfitting on a particular set of training data. This paper aims to explore methods to mitigate overfitting.
基于简单卷积神经网络的新型冠状病毒胸片分类
COVID-19疫情要求迫切需要快速、准确和可获取的检测方法。卷积神经网络应用于胸部x射线图像是一个很有前途的解决方案;然而,x射线设备的配置各不相同,不同数据集的数据质量也不一致。这将导致对特定训练数据集的过拟合。本文旨在探讨缓解过拟合的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信