Variable Width Rough-Fuzzy c-Means

A. Ferone, A. Galletti, A. Maratea
{"title":"Variable Width Rough-Fuzzy c-Means","authors":"A. Ferone, A. Galletti, A. Maratea","doi":"10.1109/SITIS.2017.81","DOIUrl":null,"url":null,"abstract":"The richness of soft clustering algorithms in the scientific literature reflects from one side the complexity of the underlying problem and from the other the many attempts that have been made to preserve interpretability while modeling vagueness through different theories. In this paper a hybrid rough-fuzzy unsupervised learning algorithm called Variable Width Rough-Fuzzy c-Means (VWRFCM) is derived from a unifying view of the most popular crisp, fuzzy, rough and fuzzy-rough partitive clustering algorithms. VWRFCM provides a user-defined parameter that sets the width of the core regions of all clusters in a probabilistic sense, allowing the domain experts to have both an intuitive interpretation and a powerful control possibility on the maximum allowed degree of vagueness in the clustering solution. Tests on several real datasets show a good effectiveness together with a speed-up in efficiency of VWRFCM compared to its baseline competitors.","PeriodicalId":153165,"journal":{"name":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2017.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The richness of soft clustering algorithms in the scientific literature reflects from one side the complexity of the underlying problem and from the other the many attempts that have been made to preserve interpretability while modeling vagueness through different theories. In this paper a hybrid rough-fuzzy unsupervised learning algorithm called Variable Width Rough-Fuzzy c-Means (VWRFCM) is derived from a unifying view of the most popular crisp, fuzzy, rough and fuzzy-rough partitive clustering algorithms. VWRFCM provides a user-defined parameter that sets the width of the core regions of all clusters in a probabilistic sense, allowing the domain experts to have both an intuitive interpretation and a powerful control possibility on the maximum allowed degree of vagueness in the clustering solution. Tests on several real datasets show a good effectiveness together with a speed-up in efficiency of VWRFCM compared to its baseline competitors.
变宽粗-模糊c均值
科学文献中软聚类算法的丰富性一方面反映了潜在问题的复杂性,另一方面也反映了通过不同理论对模糊性建模时为保持可解释性所做的许多尝试。本文从目前最流行的脆聚类、模糊聚类、粗糙聚类和模糊-粗糙聚类的角度出发,提出了一种粗糙-模糊混合无监督学习算法——变宽度粗糙-模糊c均值算法。VWRFCM提供了一个用户定义的参数,在概率意义上设置所有集群的核心区域的宽度,允许领域专家对聚类解决方案中最大允许的模糊程度既有直观的解释,又有强大的控制可能性。在几个真实数据集上的测试表明,与基准竞争对手相比,VWRFCM具有良好的有效性和效率提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信