Supporting temporal analytics for health-related events in microblogs

Nattiya Kanhabua, Sara Romano, Avare Stewart, W. Nejdl
{"title":"Supporting temporal analytics for health-related events in microblogs","authors":"Nattiya Kanhabua, Sara Romano, Avare Stewart, W. Nejdl","doi":"10.1145/2396761.2398726","DOIUrl":null,"url":null,"abstract":"Microblogging services, such as Twitter, are gaining interests as a means of sharing information in social networks. Numerous works have shown the potential of using Twitter posts (or tweets) in order to infer the existence and magnitude of real-world events. In the medical domain, there has been a surge in detecting public health related tweets for early warning so that a rapid response from health authorities can take place. In this paper, we present a temporal analytics tool for supporting a comparative, temporal analysis of disease outbreaks between Twitter and official sources, such as, World Health Organization (WHO) and ProMED-mail. We automatically extract and aggregate outbreak events from official outbreak reports, producing time series data. Our tool can support a correlation analysis and an understanding of the temporal developments of outbreak mentions in Twitter, based on comparisons with official sources.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Microblogging services, such as Twitter, are gaining interests as a means of sharing information in social networks. Numerous works have shown the potential of using Twitter posts (or tweets) in order to infer the existence and magnitude of real-world events. In the medical domain, there has been a surge in detecting public health related tweets for early warning so that a rapid response from health authorities can take place. In this paper, we present a temporal analytics tool for supporting a comparative, temporal analysis of disease outbreaks between Twitter and official sources, such as, World Health Organization (WHO) and ProMED-mail. We automatically extract and aggregate outbreak events from official outbreak reports, producing time series data. Our tool can support a correlation analysis and an understanding of the temporal developments of outbreak mentions in Twitter, based on comparisons with official sources.
支持对微博中与健康相关的事件进行时间分析
微博服务,如Twitter,作为在社交网络中分享信息的一种方式,正获得越来越多的兴趣。许多研究表明,利用Twitter帖子(或tweets)来推断现实世界事件的存在和规模是有潜力的。在医疗领域,检测与公共卫生有关的推文以进行早期预警的数量激增,以便卫生当局能够迅速作出反应。在本文中,我们提出了一个时间分析工具,用于支持Twitter和官方来源(如世界卫生组织(WHO)和ProMED-mail)之间疾病爆发的比较时间分析。我们自动从官方爆发报告中提取和汇总爆发事件,生成时间序列数据。我们的工具可以支持相关性分析,并基于与官方来源的比较,了解Twitter中提到的爆发的时间发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信