Modeling and algorithm to mission reliability allocation of spaceflight TT&C system based on radial basis function neural network

Xingui Zhang, Xiaoyue Wu
{"title":"Modeling and algorithm to mission reliability allocation of spaceflight TT&C system based on radial basis function neural network","authors":"Xingui Zhang, Xiaoyue Wu","doi":"10.1109/ICQR2MSE.2012.6246188","DOIUrl":null,"url":null,"abstract":"To study mission reliability allocation of the tracking, telemetry and command (TT&C) system, which is difficult to describe with a precise mathematical model and time-consumed to compute, a radial basis function neural network (RBFNN) modeling method with adaptive hybrid learning algorithm (AHL) is proposed. Principal component analysis (PCA) is used to determine the initial number of hidden units. Advanced gradient learning algorithm (AGL) to compute gradient information of network parameters is improved to accelerate convergence. Finally, realization details are provided, and simulation results show the effectiveness of the proposed method.","PeriodicalId":401503,"journal":{"name":"2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICQR2MSE.2012.6246188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To study mission reliability allocation of the tracking, telemetry and command (TT&C) system, which is difficult to describe with a precise mathematical model and time-consumed to compute, a radial basis function neural network (RBFNN) modeling method with adaptive hybrid learning algorithm (AHL) is proposed. Principal component analysis (PCA) is used to determine the initial number of hidden units. Advanced gradient learning algorithm (AGL) to compute gradient information of network parameters is improved to accelerate convergence. Finally, realization details are provided, and simulation results show the effectiveness of the proposed method.
基于径向基函数神经网络的航天测控系统任务可靠性分配建模与算法
针对难以用精确数学模型描述且计算费时的测控系统任务可靠性分配问题,提出了一种基于自适应混合学习算法(AHL)的径向基函数神经网络(RBFNN)建模方法。主成分分析(PCA)用于确定隐藏单元的初始数量。改进了计算网络参数梯度信息的高级梯度学习算法(AGL),提高了收敛速度。最后给出了实现细节,仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信