Biologically-Inspired Dense Local Descriptor for Indirect Immunofluorescence Image Classification

Diego Gragnaniello, Carlo Sansone, L. Verdoliva
{"title":"Biologically-Inspired Dense Local Descriptor for Indirect Immunofluorescence Image Classification","authors":"Diego Gragnaniello, Carlo Sansone, L. Verdoliva","doi":"10.1109/I3A.WORKSHOP.2014.18","DOIUrl":null,"url":null,"abstract":"This work deals with the design of a classification method for cells extracted from Indirect Immunofluorescence images. In particular, we propose to use a dense local descriptor invariant both to scale changes and to rotations in order to classify the six categories of staining patterns of the cells. The descriptor is able to give a compact and discriminative representation and combines a log-polar sampling with spatially-varying gaussian smoothing applied on the gradients images in specific directions. Bag of Words is finally used to perform classification and experimental results show very good performance.","PeriodicalId":103785,"journal":{"name":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 1st Workshop on Pattern Recognition Techniques for Indirect Immunofluorescence Images","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I3A.WORKSHOP.2014.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

This work deals with the design of a classification method for cells extracted from Indirect Immunofluorescence images. In particular, we propose to use a dense local descriptor invariant both to scale changes and to rotations in order to classify the six categories of staining patterns of the cells. The descriptor is able to give a compact and discriminative representation and combines a log-polar sampling with spatially-varying gaussian smoothing applied on the gradients images in specific directions. Bag of Words is finally used to perform classification and experimental results show very good performance.
用于间接免疫荧光图像分类的生物启发密集局部描述子
本工作涉及设计一种从间接免疫荧光图像中提取细胞的分类方法。特别是,我们建议使用密集的局部描述符不变量来缩放变化和旋转,以便对细胞的六种染色模式进行分类。该描述符能够给出紧凑的判别表示,并将对数极坐标采样与空间变化的高斯平滑相结合,应用于特定方向的梯度图像。最后使用Bag of Words进行分类,实验结果显示了很好的分类效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信