Running parallel bytecode interpreters on heterogeneous hardware

J. Fumero, Athanasios Stratikopoulos, Christos Kotselidis
{"title":"Running parallel bytecode interpreters on heterogeneous hardware","authors":"J. Fumero, Athanasios Stratikopoulos, Christos Kotselidis","doi":"10.1145/3397537.3397563","DOIUrl":null,"url":null,"abstract":"Since the early conception of managed runtime systems with tiered JIT compilation, several research attempts have been made to accelerate the bytecode execution. In this paper, we extend prior attempts by performing an initial analysis of whether heterogeneous hardware accelerators in the form of Graphics Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAS) can help towards achieving higher performance during the bytecode interpreter mode. To answer this question, we implemented a simple parallel Java bytecode interpreter written in OpenCL and executed it across a plethora of devices, including GPUs and FPGAs. Our preliminary evaluation shows that under specific workloads, hardware acceleration can yield up to 17x better performance compared to traditional optimized interpreters running on Intel CPUs and up to 214x compared to ARM CPUs.","PeriodicalId":373173,"journal":{"name":"Companion Proceedings of the 4th International Conference on Art, Science, and Engineering of Programming","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the 4th International Conference on Art, Science, and Engineering of Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397537.3397563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Since the early conception of managed runtime systems with tiered JIT compilation, several research attempts have been made to accelerate the bytecode execution. In this paper, we extend prior attempts by performing an initial analysis of whether heterogeneous hardware accelerators in the form of Graphics Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAS) can help towards achieving higher performance during the bytecode interpreter mode. To answer this question, we implemented a simple parallel Java bytecode interpreter written in OpenCL and executed it across a plethora of devices, including GPUs and FPGAs. Our preliminary evaluation shows that under specific workloads, hardware acceleration can yield up to 17x better performance compared to traditional optimized interpreters running on Intel CPUs and up to 214x compared to ARM CPUs.
在异构硬件上运行并行字节码解释器
自从使用分层JIT编译的托管运行时系统的早期概念出现以来,已经进行了一些研究尝试来加速字节码的执行。在本文中,我们通过对图形处理单元(gpu)和现场可编程门阵列(fpga)形式的异构硬件加速器是否有助于在字节码解释器模式下实现更高的性能进行初步分析,扩展了先前的尝试。为了回答这个问题,我们实现了一个用OpenCL编写的简单并行Java字节码解释器,并在包括gpu和fpga在内的大量设备上执行它。我们的初步评估表明,在特定的工作负载下,与在Intel cpu上运行的传统优化解释器相比,硬件加速可以产生高达17倍的性能提升,与ARM cpu相比可以产生高达214倍的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信