THE FINITE SAMPLE PERFORMANCE OF DYNAMIC MODE DECOMPOSITION

Arvind Prasadan, R. Nadakuditi
{"title":"THE FINITE SAMPLE PERFORMANCE OF DYNAMIC MODE DECOMPOSITION","authors":"Arvind Prasadan, R. Nadakuditi","doi":"10.1109/GlobalSIP.2018.8646587","DOIUrl":null,"url":null,"abstract":"We analyze the Dynamic Mode Decomposition (DMD) algorithm as applied to multivariate time-series data. Our analysis reveals the critical role played by the lag-one cross-correlation, or cross-covariance, terms. We show that when the rows of the multivariate time series matrix can be modeled as linear combinations of lag-one uncorrelated latent time series that have a non-zero lag-one autocorrelation, then in the large sample limit, DMD perfectly recovers, up to a column-wise scaling, the mixing matrix, and thus the latent time series. We validate our findings with numerical simulations, and demonstrate how DMD can be used to unmix mixed audio signals.","PeriodicalId":119131,"journal":{"name":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2018.8646587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We analyze the Dynamic Mode Decomposition (DMD) algorithm as applied to multivariate time-series data. Our analysis reveals the critical role played by the lag-one cross-correlation, or cross-covariance, terms. We show that when the rows of the multivariate time series matrix can be modeled as linear combinations of lag-one uncorrelated latent time series that have a non-zero lag-one autocorrelation, then in the large sample limit, DMD perfectly recovers, up to a column-wise scaling, the mixing matrix, and thus the latent time series. We validate our findings with numerical simulations, and demonstrate how DMD can be used to unmix mixed audio signals.
动态模态分解的有限样本性能
分析了动态模态分解(DMD)算法在多变量时间序列数据处理中的应用。我们的分析揭示了滞后交叉相关或交叉协方差项所起的关键作用。我们表明,当多变量时间序列矩阵的行可以建模为具有非零滞后自相关的滞后一不相关潜在时间序列的线性组合时,那么在大样本极限下,DMD完全恢复,直到逐列缩放,混合矩阵,从而恢复潜在时间序列。我们用数值模拟验证了我们的发现,并演示了DMD如何用于解混混合音频信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信