Knowledge Engineering Perspective of Video Compression

Daggumalli Sudheera, K. Sirisha, K. M Inchara, B. Sivaselvan
{"title":"Knowledge Engineering Perspective of Video Compression","authors":"Daggumalli Sudheera, K. Sirisha, K. M Inchara, B. Sivaselvan","doi":"10.1109/INFOCOMTECH.2018.8722366","DOIUrl":null,"url":null,"abstract":"The focus of this paper is to explore the scope of data mining techniques in video compression. Redundant information in a video is generally classified as temporal and spatial. This superflous data takes up excessive storage space and time during transmission which can be eliminated. The proposed work incorporates various data mining techniques like dimensionality reduction, clustering and mining to prune out temporal and spatial redundancies. The results show noticeable improvement in compression ratio. The compression attained by the proposed work is in the vicinity of existing codecs.","PeriodicalId":175757,"journal":{"name":"2018 Conference on Information and Communication Technology (CICT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Information and Communication Technology (CICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMTECH.2018.8722366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The focus of this paper is to explore the scope of data mining techniques in video compression. Redundant information in a video is generally classified as temporal and spatial. This superflous data takes up excessive storage space and time during transmission which can be eliminated. The proposed work incorporates various data mining techniques like dimensionality reduction, clustering and mining to prune out temporal and spatial redundancies. The results show noticeable improvement in compression ratio. The compression attained by the proposed work is in the vicinity of existing codecs.
视频压缩的知识工程视角
本文的重点是探讨数据挖掘技术在视频压缩中的应用范围。视频中的冗余信息一般分为时间和空间两种。这些多余的数据在传输过程中占用了过多的存储空间和时间,这些都是可以消除的。提出的工作结合了各种数据挖掘技术,如降维、聚类和挖掘,以减少时间和空间冗余。结果表明压缩比有明显改善。所提出的工作所达到的压缩是在现有的编解码器附近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信