N. Ceccolini, A. Zona, A. Dall'asta, G. della Corte
{"title":"Influence of design criteria on the seismic response of single-storey steel buildings","authors":"N. Ceccolini, A. Zona, A. Dall'asta, G. della Corte","doi":"10.2749/prague.2022.0624","DOIUrl":null,"url":null,"abstract":"Structural design in seismic areas could be based on either dissipative or non-dissipative concepts, as for example allowed in European and Italian codes. In the first case, capacity design is the basis of structural dimensioning; both strength and ductility verifications are required. In the second case, structural elements are designed to remain in the elastic field under the assigned design seismic input; ductility verifications are not enforced. In steel structures, these two design approaches might lead to very different seismic structural performances, depending on the role that the non-ductile elements and connections have in the non-dissipative design. This situation might represent a source of weakness and lead to premature failures. In the present work, with reference to a single- storey steel industrial building with moment-resisting frames in the transverse direction and con- centric braces in the longitudinal direction, the critical issues encountered when modelling the post- elastic behaviour of a non-dissipative steel structure are discussed. Subsequently, a comparison is made with a structure with the same geometry, designed with dissipative structural behaviour.","PeriodicalId":168532,"journal":{"name":"IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2749/prague.2022.0624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Structural design in seismic areas could be based on either dissipative or non-dissipative concepts, as for example allowed in European and Italian codes. In the first case, capacity design is the basis of structural dimensioning; both strength and ductility verifications are required. In the second case, structural elements are designed to remain in the elastic field under the assigned design seismic input; ductility verifications are not enforced. In steel structures, these two design approaches might lead to very different seismic structural performances, depending on the role that the non-ductile elements and connections have in the non-dissipative design. This situation might represent a source of weakness and lead to premature failures. In the present work, with reference to a single- storey steel industrial building with moment-resisting frames in the transverse direction and con- centric braces in the longitudinal direction, the critical issues encountered when modelling the post- elastic behaviour of a non-dissipative steel structure are discussed. Subsequently, a comparison is made with a structure with the same geometry, designed with dissipative structural behaviour.