Deep-level acoustic-to-articulatory mapping for DBN-HMM based phone recognition

Leonardo Badino, Claudia Canevari, L. Fadiga, G. Metta
{"title":"Deep-level acoustic-to-articulatory mapping for DBN-HMM based phone recognition","authors":"Leonardo Badino, Claudia Canevari, L. Fadiga, G. Metta","doi":"10.1109/SLT.2012.6424252","DOIUrl":null,"url":null,"abstract":"In this paper we experiment with methods based on Deep Belief Networks (DBNs) to recover measured articulatory data from speech acoustics. Our acoustic-to-articulatory mapping (AAM) processes go through multi-layered and hierarchical (i.e., deep) representations of the acoustic and the articulatory domains obtained through unsupervised learning of DBNs. The unsupervised learning of DBNs can serve two purposes: (i) pre-training of the Multi-layer Perceptrons that perform AAM; (ii) transformation of the articulatory domain that is recovered from acoustics through AAM. The recovered articulatory features are combined with MFCCs to compute phone posteriors for phone recognition. Tested on the MOCHA-TIMIT corpus, the recovered articulatory features, when combined with MFCCs, lead to up to a remarkable 16.6% relative phone error reduction w.r.t. a phone recognizer that only uses MFCCs.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"192 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper we experiment with methods based on Deep Belief Networks (DBNs) to recover measured articulatory data from speech acoustics. Our acoustic-to-articulatory mapping (AAM) processes go through multi-layered and hierarchical (i.e., deep) representations of the acoustic and the articulatory domains obtained through unsupervised learning of DBNs. The unsupervised learning of DBNs can serve two purposes: (i) pre-training of the Multi-layer Perceptrons that perform AAM; (ii) transformation of the articulatory domain that is recovered from acoustics through AAM. The recovered articulatory features are combined with MFCCs to compute phone posteriors for phone recognition. Tested on the MOCHA-TIMIT corpus, the recovered articulatory features, when combined with MFCCs, lead to up to a remarkable 16.6% relative phone error reduction w.r.t. a phone recognizer that only uses MFCCs.
基于DBN-HMM的电话识别的深层次声学-发音映射
在本文中,我们尝试了基于深度信念网络(DBNs)的方法来从语音声学中恢复测量的发音数据。我们的声学到发音映射(AAM)过程通过对dbn的无监督学习获得的声学和发音域的多层和分层(即深度)表示。dbn的无监督学习可以达到两个目的:(i)执行AAM的多层感知器的预训练;(ii)通过AAM从声学中恢复的发音域的转换。将恢复的发音特征与mfc相结合,计算手机后验,用于手机识别。在MOCHA-TIMIT语料库上进行的测试表明,与仅使用mfccc的手机识别器相比,恢复的发音特征与mfccc相结合,可使相对电话错误减少16.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信