Malware detection in Android by network traffic analysis

Mehedee Zaman, Tazrian Siddiqui, M. R. Amin, Md. Shohrab Hossain
{"title":"Malware detection in Android by network traffic analysis","authors":"Mehedee Zaman, Tazrian Siddiqui, M. R. Amin, Md. Shohrab Hossain","doi":"10.1109/NSysS.2015.7043530","DOIUrl":null,"url":null,"abstract":"A common behavior of mobile malware is transferring sensitive information of the cell phone user to malicious remote servers. In this paper, we describe and demonstrate in full detail, a method for detecting malware based on this behavior. For this, we first create an App-URL table that logs all attempts made by all applications to communicate with remote servers. Each entry in this log preserves the application id and the URI that the application contacted. From this log, with the help of a reliable and comprehensive domain blacklist, we can detect rogue applications that communicate with malicious domains. We further propose a behavioral analysis method using syscall tracing. Our work can be integrated with be behavioral analysis to build an intelligent malware detection model.","PeriodicalId":408601,"journal":{"name":"2015 International Conference on Networking Systems and Security (NSysS)","volume":"76 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Networking Systems and Security (NSysS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSysS.2015.7043530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

A common behavior of mobile malware is transferring sensitive information of the cell phone user to malicious remote servers. In this paper, we describe and demonstrate in full detail, a method for detecting malware based on this behavior. For this, we first create an App-URL table that logs all attempts made by all applications to communicate with remote servers. Each entry in this log preserves the application id and the URI that the application contacted. From this log, with the help of a reliable and comprehensive domain blacklist, we can detect rogue applications that communicate with malicious domains. We further propose a behavioral analysis method using syscall tracing. Our work can be integrated with be behavioral analysis to build an intelligent malware detection model.
基于网络流量分析的Android恶意软件检测
移动恶意软件的一个常见行为是将手机用户的敏感信息传输到恶意的远程服务器。在本文中,我们详细描述并演示了一种基于此行为的恶意软件检测方法。为此,我们首先创建一个App-URL表,记录所有应用程序与远程服务器通信的所有尝试。该日志中的每个条目都保留了应用程序id和应用程序所联系的URI。通过该日志,我们可以通过可靠、全面的域黑名单,检测出与恶意域通信的恶意应用程序。我们进一步提出了一种使用系统调用跟踪的行为分析方法。我们的工作可以与行为分析相结合,构建智能恶意软件检测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信