A two-stage subspace trust region approach for deep neural network training

V. Dudar, G. Chierchia, É. Chouzenoux, J. Pesquet, V. Semenov
{"title":"A two-stage subspace trust region approach for deep neural network training","authors":"V. Dudar, G. Chierchia, É. Chouzenoux, J. Pesquet, V. Semenov","doi":"10.23919/EUSIPCO.2017.8081215","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a novel second-order method for training feed-forward neural nets. At each iteration, we construct a quadratic approximation to the cost function in a low-dimensional subspace. We minimize this approximation inside a trust region through a two-stage procedure: first inside the embedded positive curvature subspace, followed by a gradient descent step. This approach leads to a fast objective function decay, prevents convergence to saddle points, and alleviates the need for manually tuning parameters. We show the good performance of the proposed algorithm on benchmark datasets.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"529 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we develop a novel second-order method for training feed-forward neural nets. At each iteration, we construct a quadratic approximation to the cost function in a low-dimensional subspace. We minimize this approximation inside a trust region through a two-stage procedure: first inside the embedded positive curvature subspace, followed by a gradient descent step. This approach leads to a fast objective function decay, prevents convergence to saddle points, and alleviates the need for manually tuning parameters. We show the good performance of the proposed algorithm on benchmark datasets.
一种用于深度神经网络训练的两阶段子空间信任域方法
在本文中,我们提出了一种新的二阶方法来训练前馈神经网络。在每次迭代中,我们在低维子空间中构造代价函数的二次逼近。我们通过两个阶段的过程在一个信任区域内最小化这个近似:首先在嵌入的正曲率子空间内,然后是梯度下降步骤。这种方法使目标函数衰减快,防止收敛到鞍点,减轻了手动调整参数的需要。我们在基准数据集上证明了该算法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信