A penalized two-pass regression to predict stock returns with time-varying risk premia

Gaetan Bakalli, S. Guerrier, O. Scaillet
{"title":"A penalized two-pass regression to predict stock returns with time-varying risk premia","authors":"Gaetan Bakalli, S. Guerrier, O. Scaillet","doi":"10.2139/ssrn.3777215","DOIUrl":null,"url":null,"abstract":"We develop a penalized two-pass regression with time-varying factor loadings. The penalization in the first pass enforces sparsity for the time-variation drivers while also maintaining compatibility with the no arbitrage restrictions by regularizing appropriate groups of coefficients. The second pass delivers risk premia estimates to predict equity excess returns. Our Monte Carlo results and our empirical results on a large cross-sectional data set of US individual stocks show that penalization without grouping can yield to nearly all estimated time-varying models violating the no arbitrage restrictions. Moreover, our results demonstrate that the proposed method reduces the prediction errors compared to a penalized approach without appropriate grouping or a time-invariant factor model.","PeriodicalId":367023,"journal":{"name":"PSN: Other International Political Economy: Investment & Finance (Topic)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Other International Political Economy: Investment & Finance (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3777215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We develop a penalized two-pass regression with time-varying factor loadings. The penalization in the first pass enforces sparsity for the time-variation drivers while also maintaining compatibility with the no arbitrage restrictions by regularizing appropriate groups of coefficients. The second pass delivers risk premia estimates to predict equity excess returns. Our Monte Carlo results and our empirical results on a large cross-sectional data set of US individual stocks show that penalization without grouping can yield to nearly all estimated time-varying models violating the no arbitrage restrictions. Moreover, our results demonstrate that the proposed method reduces the prediction errors compared to a penalized approach without appropriate grouping or a time-invariant factor model.
具有时变风险溢价的股票收益预测的惩罚双通道回归
我们开发了一种带有时变因子负载的惩罚性双通道回归。第一步的惩罚强制了时变驱动的稀疏性,同时还通过正则化适当的系数组来保持与无套利限制的兼容性。第二步提供风险溢价估计,以预测股票超额回报。我们的蒙特卡罗结果和我们对美国个股的大型横截面数据集的实证结果表明,不分组的惩罚几乎可以产生所有违反无套利限制的估计时变模型。此外,我们的结果表明,与没有适当分组或时不变因子模型的惩罚方法相比,所提出的方法减少了预测误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信