Air Passenger Estimation Using Gravity Model and Learning Approaches: Case Study of Thailand

Supaporn Erjongmanee, Navatasn Kongsamutr
{"title":"Air Passenger Estimation Using Gravity Model and Learning Approaches: Case Study of Thailand","authors":"Supaporn Erjongmanee, Navatasn Kongsamutr","doi":"10.1109/ICAICTA.2018.8541335","DOIUrl":null,"url":null,"abstract":"Air passenger estimation is essential since air-travel demand continuously grows. This work proposes to derive an air-passenger estimation model using three forms of gravity model and two machine learning approaches, regression and neural network. Data used in this work are Thailand’s domestic air-passengers and affecting factors on air-travel demand collected from publicly available sources. The results show that both regression and neural network with one hidden layer provide low error. Gross domestic product and number of tourists change in the same direction with air-passenger demand. The outcomes of this work give more understandings in employing machine learning to estimate air passengers in Thailand and can be developed for more complex forecast models in the future.","PeriodicalId":184882,"journal":{"name":"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Advanced Informatics: Concept Theory and Applications (ICAICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAICTA.2018.8541335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Air passenger estimation is essential since air-travel demand continuously grows. This work proposes to derive an air-passenger estimation model using three forms of gravity model and two machine learning approaches, regression and neural network. Data used in this work are Thailand’s domestic air-passengers and affecting factors on air-travel demand collected from publicly available sources. The results show that both regression and neural network with one hidden layer provide low error. Gross domestic product and number of tourists change in the same direction with air-passenger demand. The outcomes of this work give more understandings in employing machine learning to estimate air passengers in Thailand and can be developed for more complex forecast models in the future.
基于重力模型和学习方法的航空旅客估计:以泰国为例
由于航空旅行需求不断增长,航空旅客估计是必不可少的。这项工作提出了一个航空乘客估计模型,使用三种形式的重力模型和两种机器学习方法,回归和神经网络。这项工作中使用的数据是从公开来源收集的泰国国内航空乘客和影响航空旅行需求的因素。结果表明,单隐层神经网络和回归算法均具有较低的误差。国内生产总值和游客数量随航空客运需求的变化方向相同。这项工作的结果为使用机器学习来估计泰国的航空乘客提供了更多的理解,并且可以在未来开发更复杂的预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信