{"title":"State space abstraction for parameterized self-stabilizing embedded systems","authors":"N. Liveris, H. Zhou, R. Dick, P. Banerjee","doi":"10.1145/1450058.1450061","DOIUrl":null,"url":null,"abstract":"Self-stabilizing systems are systems that automatically recover from any transient fault. Proving the correctness of a parameterized self-stabilizing system, i.e., a system composed of an arbitrary number of processes, is a challenging task. For the verification of parameterized systems the method of control abstraction has been developed. However, control abstraction can only be applied to systems in which each process has a fixed number of observable variables. In this article, we propose a technique to abstract a parameterized self-stabilizing system, whose processes have a parameterized number of observable variables, to a system with fixed number of observable variables. This enables the use of control abstraction for verification. The proposed technique targets low-atomicity, shared-memory, asynchronous systems. We establish the completeness of the method under reasonable conditions and demonstrate its effectiveness by applying it on a number of self-stabilizing distributed systems.","PeriodicalId":143573,"journal":{"name":"International Conference on Embedded Software","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Embedded Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1450058.1450061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Self-stabilizing systems are systems that automatically recover from any transient fault. Proving the correctness of a parameterized self-stabilizing system, i.e., a system composed of an arbitrary number of processes, is a challenging task. For the verification of parameterized systems the method of control abstraction has been developed. However, control abstraction can only be applied to systems in which each process has a fixed number of observable variables. In this article, we propose a technique to abstract a parameterized self-stabilizing system, whose processes have a parameterized number of observable variables, to a system with fixed number of observable variables. This enables the use of control abstraction for verification. The proposed technique targets low-atomicity, shared-memory, asynchronous systems. We establish the completeness of the method under reasonable conditions and demonstrate its effectiveness by applying it on a number of self-stabilizing distributed systems.