Jacob Goeppert, Simon Braun, David Pellhammer, Mohammad Amayreh, J. Leicht, M. Keller, Y. Manoli
{"title":"Area Constrained Multi-Source Power Management for Thermoelectric Energy Harvesting","authors":"Jacob Goeppert, Simon Braun, David Pellhammer, Mohammad Amayreh, J. Leicht, M. Keller, Y. Manoli","doi":"10.1109/ESSCIRC.2019.8902907","DOIUrl":null,"url":null,"abstract":"This paper presents a power management unit for a multi-source single-load system for thermoelectric energy harvesting. The system uses a conventional two-converter architecture and a time multiplexed hysteretic control scheme. The output voltage of four µTEGs with an open circuit voltage from 3 V to 5 V and an internal resistance of 2 kΩ to 8 kΩ are controlled into their respective maximum power point at a maximum measured tracking loss of 2.88 %. Tight system area design constraints require a high degree of integration and the use of a switched capacitor converter as well as an integrated low-dropout regulator. The system achieves a peak end-to-end efficiency of 37.7 % at the maximum input power of 4.44 mW. (Keywords: low power, power management, µTEG, micro energy harvesting)","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"458 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a power management unit for a multi-source single-load system for thermoelectric energy harvesting. The system uses a conventional two-converter architecture and a time multiplexed hysteretic control scheme. The output voltage of four µTEGs with an open circuit voltage from 3 V to 5 V and an internal resistance of 2 kΩ to 8 kΩ are controlled into their respective maximum power point at a maximum measured tracking loss of 2.88 %. Tight system area design constraints require a high degree of integration and the use of a switched capacitor converter as well as an integrated low-dropout regulator. The system achieves a peak end-to-end efficiency of 37.7 % at the maximum input power of 4.44 mW. (Keywords: low power, power management, µTEG, micro energy harvesting)