A Reconfigurable Branch Predictor for Spatial Computing Architectures

Yanan Lu, Leibo Liu, Jian Liu, S. Yin, Shaojun Wei
{"title":"A Reconfigurable Branch Predictor for Spatial Computing Architectures","authors":"Yanan Lu, Leibo Liu, Jian Liu, S. Yin, Shaojun Wei","doi":"10.1145/3408127.3408168","DOIUrl":null,"url":null,"abstract":"Branch predictors are widely used in general purpose processors to deal with control flows. However, control flows are spatially dispersed in spatial computing architectures and traditional branch predictors are not so much effective. This paper proposes a novel branch predictor that can be configured into different prediction modes according to the control flow characteristics. Experiment results show that the proposed predictor exceeds all the traditional predictors in terms of accuracy on a coarsegrained reconfigurable array platform. It improves the prediction accuracy by 5.09% compared to a state-of-the-art technique in the cost of slight area increment.","PeriodicalId":383401,"journal":{"name":"Proceedings of the 2020 4th International Conference on Digital Signal Processing","volume":"15 42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 4th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3408127.3408168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Branch predictors are widely used in general purpose processors to deal with control flows. However, control flows are spatially dispersed in spatial computing architectures and traditional branch predictors are not so much effective. This paper proposes a novel branch predictor that can be configured into different prediction modes according to the control flow characteristics. Experiment results show that the proposed predictor exceeds all the traditional predictors in terms of accuracy on a coarsegrained reconfigurable array platform. It improves the prediction accuracy by 5.09% compared to a state-of-the-art technique in the cost of slight area increment.
空间计算体系结构的可重构分支预测器
分支预测器在通用处理器中广泛用于处理控制流。然而,在空间计算体系结构中,控制流在空间上是分散的,传统的分支预测器不是很有效。本文提出了一种新的分支预测器,可以根据控制流的特点配置成不同的预测模式。实验结果表明,该预测器在粗粒度可重构阵列平台上的预测精度优于所有传统的预测器。以微小面积增量为代价,与现有技术相比,预测精度提高了5.09%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信