Compare Stereo Patches Using Atrous Convolutional Neural Networks

Zhiwei Li, Lei Yu
{"title":"Compare Stereo Patches Using Atrous Convolutional Neural Networks","authors":"Zhiwei Li, Lei Yu","doi":"10.1145/3206025.3206075","DOIUrl":null,"url":null,"abstract":"In this work, we address the task of dense stereo matching with Convolutional Neural Networks (CNNs). Particularly, we focus on improving matching cost computation by better aggregating contextual information. Towards this goal, we advocate to use atrous convolution, a powerful tool for dense prediction task that allows us to control the resolution at which feature responses are computed within CNNs and to enlarge the receptive field of the network without losing image resolution and requiring learning extra parameters. Aiming to improve the performance of atrous convolution, we propose different frameworks for further boosting performance. We evaluate our models on KITTI 2015 benchmark, the result shows that we achieve on-par performance with fewer post-processing methods applied.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"174 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this work, we address the task of dense stereo matching with Convolutional Neural Networks (CNNs). Particularly, we focus on improving matching cost computation by better aggregating contextual information. Towards this goal, we advocate to use atrous convolution, a powerful tool for dense prediction task that allows us to control the resolution at which feature responses are computed within CNNs and to enlarge the receptive field of the network without losing image resolution and requiring learning extra parameters. Aiming to improve the performance of atrous convolution, we propose different frameworks for further boosting performance. We evaluate our models on KITTI 2015 benchmark, the result shows that we achieve on-par performance with fewer post-processing methods applied.
比较使用卷积神经网络的立体图像
在这项工作中,我们解决了卷积神经网络(cnn)密集立体匹配的任务。特别是,我们专注于通过更好地聚合上下文信息来改进匹配成本计算。为了实现这一目标,我们提倡使用亚属性卷积,这是一个用于密集预测任务的强大工具,它允许我们控制cnn内计算特征响应的分辨率,并在不损失图像分辨率和需要学习额外参数的情况下扩大网络的接受域。为了提高属性卷积的性能,我们提出了不同的框架来进一步提高性能。我们在KITTI 2015基准测试上对我们的模型进行了评估,结果表明我们在使用较少的后处理方法的情况下取得了相当的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信