SPECTRAL ASYMPTOTICS OF NONSELFADJOINT ELLIPTIC SYSTEMS OF DIFFERENTIAL OPERATORS IN BOUNDED DOMAINS

K. K. Boimatov, A. G. Kostyuchenko
{"title":"SPECTRAL ASYMPTOTICS OF NONSELFADJOINT ELLIPTIC SYSTEMS OF DIFFERENTIAL OPERATORS IN BOUNDED DOMAINS","authors":"K. K. Boimatov, A. G. Kostyuchenko","doi":"10.1070/SM1992V071N02ABEH002135","DOIUrl":null,"url":null,"abstract":"In a bounded domain with smooth boundary, a matrix elliptic differential operator is considered. It is assumed that the eigenvalues of the symbol of lie on the positive semiaxis and outside the angle , .The principal term of the asymptotics of the function describing the distribution of the eigenvalues of in the angle is calculated. Under the condition that all the eigenvalues of the symbol lie outside , upper bounds are obtained for with reduced order of growth. The case of a selfadjoint operator is considered separately.","PeriodicalId":208776,"journal":{"name":"Mathematics of The Ussr-sbornik","volume":"133 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of The Ussr-sbornik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1070/SM1992V071N02ABEH002135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In a bounded domain with smooth boundary, a matrix elliptic differential operator is considered. It is assumed that the eigenvalues of the symbol of lie on the positive semiaxis and outside the angle , .The principal term of the asymptotics of the function describing the distribution of the eigenvalues of in the angle is calculated. Under the condition that all the eigenvalues of the symbol lie outside , upper bounds are obtained for with reduced order of growth. The case of a selfadjoint operator is considered separately.
有界域上微分算子非自伴随椭圆系统的谱渐近性
在光滑边界有界域上,考虑矩阵椭圆微分算子。假设符号的特征值位于角的正半轴上和角外,计算了描述特征值在角内分布的函数的渐近主项。在符号的所有特征值都在外面的条件下,以降阶增长得到了上界。对自伴随算子的情况单独考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信