ZuSE Ki-Avf: Application-Specific AI Processor for Intelligent Sensor Signal Processing in Autonomous Driving

Gia Bao Thieu, Sven Gesper, G. P. Vayá, C. Riggers, Oliver Renke, Till Fiedler, Jakob Marten, Tobias Stuckenberg, Holger Blume, C. Weis, Lukas Steiner, C. Sudarshan, N. Wehn, Lennart M. Reimann, R. Leupers, Michael Beyer, D. Köhler, Alisa Jauch, Jan Micha Borrmann, Setareh Jaberansari, T. Berthold, Meinolf Blawat, Markus Kock, Gregor Schewior, Jens Benndorf, Frederik Kautz, Hans-Martin Bluethgen, C. Sauer
{"title":"ZuSE Ki-Avf: Application-Specific AI Processor for Intelligent Sensor Signal Processing in Autonomous Driving","authors":"Gia Bao Thieu, Sven Gesper, G. P. Vayá, C. Riggers, Oliver Renke, Till Fiedler, Jakob Marten, Tobias Stuckenberg, Holger Blume, C. Weis, Lukas Steiner, C. Sudarshan, N. Wehn, Lennart M. Reimann, R. Leupers, Michael Beyer, D. Köhler, Alisa Jauch, Jan Micha Borrmann, Setareh Jaberansari, T. Berthold, Meinolf Blawat, Markus Kock, Gregor Schewior, Jens Benndorf, Frederik Kautz, Hans-Martin Bluethgen, C. Sauer","doi":"10.23919/DATE56975.2023.10136978","DOIUrl":null,"url":null,"abstract":"Modern and future AI-based automotive applications, such as autonomous driving, require the efficient real-time processing of huge amounts of data from different sensors, like camera, radar, and LiDAR. In the ZuSE-KI-AVF project, multiple university, and industry partners collaborate to develop a novel massive parallel processor architecture, based on a cus-tomized RISC-V host processor, and an efficient high-performance vertical vector coprocessor. In addition, a software development framework is also provided to efficiently program AI-based sensor processing applications. The proposed processor system was verified and evaluated on a state-of-the-art UltraScale+ FPGA board, reaching a processing performance of up to 126.9 FPS, while executing the YOLO-LITE CNN on 224x224 input images. Further optimizations of the FPGA design and the realization of the processor system on a 22nm FDSOI CMOS technology are planned.","PeriodicalId":340349,"journal":{"name":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE56975.2023.10136978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modern and future AI-based automotive applications, such as autonomous driving, require the efficient real-time processing of huge amounts of data from different sensors, like camera, radar, and LiDAR. In the ZuSE-KI-AVF project, multiple university, and industry partners collaborate to develop a novel massive parallel processor architecture, based on a cus-tomized RISC-V host processor, and an efficient high-performance vertical vector coprocessor. In addition, a software development framework is also provided to efficiently program AI-based sensor processing applications. The proposed processor system was verified and evaluated on a state-of-the-art UltraScale+ FPGA board, reaching a processing performance of up to 126.9 FPS, while executing the YOLO-LITE CNN on 224x224 input images. Further optimizations of the FPGA design and the realization of the processor system on a 22nm FDSOI CMOS technology are planned.
ZuSE Ki-Avf:用于自动驾驶智能传感器信号处理的专用AI处理器
现代和未来基于人工智能的汽车应用,如自动驾驶,需要对来自不同传感器(如摄像头、雷达和激光雷达)的大量数据进行有效的实时处理。在ZuSE-KI-AVF项目中,多个大学和行业合作伙伴合作开发了一种新型的大规模并行处理器架构,该架构基于定制的RISC-V主机处理器和高效的高性能垂直矢量协处理器。此外,还提供了一个软件开发框架,以有效地编写基于人工智能的传感器处理应用程序。所提出的处理器系统在最先进的UltraScale+ FPGA板上进行了验证和评估,达到高达126.9 FPS的处理性能,同时在224x224输入图像上执行YOLO-LITE CNN。进一步优化FPGA设计,并计划在22nm FDSOI CMOS技术上实现处理器系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信