CLAD: A Deep Learning Framework for Continually Learning in Anomaly Detection

Yu Cao, Hong-sheng Gan
{"title":"CLAD: A Deep Learning Framework for Continually Learning in Anomaly Detection","authors":"Yu Cao, Hong-sheng Gan","doi":"10.1145/3520084.3520109","DOIUrl":null,"url":null,"abstract":"The rapid development and frequent revolutions in information technology (like Edge Computing, Wireless Sensor Network) highlight the significance of Internet of Things. Nowadays, a variety of infrastructures from diverse fields are limited by external and internal environmental factors. In actual operation, these factors may cause serious anomalies and aggravate the burden of facilities’ maintenance. With a rise in the number and running time, the performance of these facilities would be unstable and complex. This paper proposes a deep learning framework (CLAD) to do adaptive anomaly detection. It implements dynamic anomaly thresholding based on the prediction of incremental Long Short-Term Memory. This framework employs a replay buffer to solve the decline of detection accuracy. With this framework, models can keep perfect detection accuracy under a quite high load (time and number). This framework is valuable for further research of adaptive anomaly detection.","PeriodicalId":444957,"journal":{"name":"Proceedings of the 2022 5th International Conference on Software Engineering and Information Management","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Software Engineering and Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3520084.3520109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The rapid development and frequent revolutions in information technology (like Edge Computing, Wireless Sensor Network) highlight the significance of Internet of Things. Nowadays, a variety of infrastructures from diverse fields are limited by external and internal environmental factors. In actual operation, these factors may cause serious anomalies and aggravate the burden of facilities’ maintenance. With a rise in the number and running time, the performance of these facilities would be unstable and complex. This paper proposes a deep learning framework (CLAD) to do adaptive anomaly detection. It implements dynamic anomaly thresholding based on the prediction of incremental Long Short-Term Memory. This framework employs a replay buffer to solve the decline of detection accuracy. With this framework, models can keep perfect detection accuracy under a quite high load (time and number). This framework is valuable for further research of adaptive anomaly detection.
在异常检测中持续学习的深度学习框架
信息技术(如边缘计算、无线传感器网络)的快速发展和频繁革命凸显了物联网的重要性。如今,来自不同领域的各种基础设施受到外部和内部环境因素的限制。在实际运行中,这些因素可能会造成严重的异常,加重设施维护的负担。随着数量和运行时间的增加,这些设施的性能将变得不稳定和复杂。本文提出了一种深度学习框架(CLAD)来进行自适应异常检测。它基于增量长短期记忆的预测实现了动态异常阈值。该框架采用重放缓冲来解决检测精度下降的问题。在此框架下,模型可以在较高的负载(时间和数量)下保持较好的检测精度。该框架对进一步研究自适应异常检测具有一定的参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信