The heterotic 𝐺₂ system on contact Calabi–Yau 7-manifolds

Jason D. Lotay, H. S. Earp
{"title":"The heterotic 𝐺₂ system on contact Calabi–Yau 7-manifolds","authors":"Jason D. Lotay, H. S. Earp","doi":"10.1090/btran/129","DOIUrl":null,"url":null,"abstract":"<p>We obtain non-trivial approximate solutions to the heterotic <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper G 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">G</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {G}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> system on the total spaces of non-trivial circle bundles over Calabi–Yau <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"3\">\n <mml:semantics>\n <mml:mn>3</mml:mn>\n <mml:annotation encoding=\"application/x-tex\">3</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-orbifolds, which satisfy the equations up to an arbitrarily small error, by adjusting the size of the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S Superscript 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>S</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">S^1</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> fibres in proportion to a power of the string constant <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha prime\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>′</mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\alpha ’</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. Each approximate solution provides a cocalibrated <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper G 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">G</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {G}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-structure, the torsion of which realises a non-trivial scalar field, a constant (trivial) dilaton field and an <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H\">\n <mml:semantics>\n <mml:mi>H</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">H</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-flux with non-trivial Chern–Simons defect. The approximate solutions also include a connection on the tangent bundle which, together with a non-flat <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper G 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">G</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {G}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-instanton induced from the horizontal Calabi–Yau metric, satisfy the anomaly-free condition, also known as the heterotic Bianchi identity. The approximate solutions fail to be genuine solutions solely because the connections on the tangent bundle are only <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"normal upper G 2\">\n <mml:semantics>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"normal\">G</mml:mi>\n </mml:mrow>\n <mml:mn>2</mml:mn>\n </mml:msub>\n <mml:annotation encoding=\"application/x-tex\">\\mathrm {G}_2</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>-instantons up to higher order corrections in <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha prime\">\n <mml:semantics>\n <mml:msup>\n <mml:mi>α<!-- α --></mml:mi>\n <mml:mo>′</mml:mo>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\alpha ’</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>","PeriodicalId":377306,"journal":{"name":"Transactions of the American Mathematical Society, Series B","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the American Mathematical Society, Series B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/btran/129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We obtain non-trivial approximate solutions to the heterotic G 2 \mathrm {G}_2 system on the total spaces of non-trivial circle bundles over Calabi–Yau 3 3 -orbifolds, which satisfy the equations up to an arbitrarily small error, by adjusting the size of the S 1 S^1 fibres in proportion to a power of the string constant α \alpha ’ . Each approximate solution provides a cocalibrated G 2 \mathrm {G}_2 -structure, the torsion of which realises a non-trivial scalar field, a constant (trivial) dilaton field and an H H -flux with non-trivial Chern–Simons defect. The approximate solutions also include a connection on the tangent bundle which, together with a non-flat G 2 \mathrm {G}_2 -instanton induced from the horizontal Calabi–Yau metric, satisfy the anomaly-free condition, also known as the heterotic Bianchi identity. The approximate solutions fail to be genuine solutions solely because the connections on the tangent bundle are only G 2 \mathrm {G}_2 -instantons up to higher order corrections in α \alpha ’ .

接触Calabi-Yau 7流形上的异质𝐺2体系
通过调整s1 S^1纤维的大小与弦常数α ' \ α '的幂次成比例,我们在Calabi-Yau 3 -轨道上的非平凡圆束的总空间上得到了异质2g \ mathm {G}_2系统的非平凡近似解,该系统在任意小的误差范围内满足方程。每个近似解提供了一个协标定的g2 \数学{G}_2 -结构,其扭转实现了一个非平凡标量场、一个常数(平凡)膨胀场和一个具有非平凡chen - simons缺陷的H - H -通量。近似解还包括切线束上的一个连接,该连接与由水平Calabi-Yau度规导出的非平坦的g2 \数学{G}_2 -瞬子一起,满足无异常条件,也称为异质Bianchi恒等式。由于切线束上的连接只有g2 \ mathm {G}_2 -instantons,直到α ' \ α '的高阶修正,所以近似解不能成为真解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信