SinGAN-GIF: Learning a Generative Video Model from a Single GIF

Rajat Arora, Yong Jae Lee
{"title":"SinGAN-GIF: Learning a Generative Video Model from a Single GIF","authors":"Rajat Arora, Yong Jae Lee","doi":"10.1109/WACV48630.2021.00135","DOIUrl":null,"url":null,"abstract":"We propose SinGAN-GIF, an extension of the image-based SinGAN [27] to GIFs or short video snippets. Our method learns the distribution of both the image patches in the GIF as well as their motion patterns. We do so by using a pyramid of 3D and 2D convolutional networks to model temporal information while reducing model parameters and training time, along with an image and a video discriminator. SinGAN-GIF can generate similar looking video samples for natural scenes at different spatial resolutions or temporal frame rates, and can be extended to other video applications like video editing, super resolution, and motion transfer. The project page, with supplementary video results, is: https://rajat95.github.io/singan-gif/","PeriodicalId":236300,"journal":{"name":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV48630.2021.00135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We propose SinGAN-GIF, an extension of the image-based SinGAN [27] to GIFs or short video snippets. Our method learns the distribution of both the image patches in the GIF as well as their motion patterns. We do so by using a pyramid of 3D and 2D convolutional networks to model temporal information while reducing model parameters and training time, along with an image and a video discriminator. SinGAN-GIF can generate similar looking video samples for natural scenes at different spatial resolutions or temporal frame rates, and can be extended to other video applications like video editing, super resolution, and motion transfer. The project page, with supplementary video results, is: https://rajat95.github.io/singan-gif/
SinGAN-GIF:从单个GIF中学习生成视频模型
我们提出SinGAN- gif,将基于图像的SinGAN[27]扩展到gif或短视频片段。我们的方法学习了图像块在GIF中的分布以及它们的运动模式。我们通过使用3D和2D卷积网络的金字塔来建模时间信息,同时减少模型参数和训练时间,以及图像和视频鉴别器来做到这一点。SinGAN-GIF可以在不同的空间分辨率或时间帧率下为自然场景生成相似的视频样本,并且可以扩展到视频编辑、超分辨率和运动传输等其他视频应用中。项目页面(附带视频结果)是:https://rajat95.github.io/singan-gif/
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信