Non-Parametric Method for Enhancement of Darker Portion in an Image

Sachin Gavhane, Amruta Pokhare, S. Shitole
{"title":"Non-Parametric Method for Enhancement of Darker Portion in an Image","authors":"Sachin Gavhane, Amruta Pokhare, S. Shitole","doi":"10.1109/ICCDW45521.2020.9318718","DOIUrl":null,"url":null,"abstract":"Images caught in darker area builds complexities in handling and removing essential data. Improvement of such pictures encourages us to recover significant information. ANN based error back propagation (BP) algorithm is used for enhancing shadow region of an image. Dataset used in this paper is a shadow image with its enhanced output (log transformed), so that model will be able to learn to enhance the shadow region of any given image. Darker locale in an image are successfully reduced in the results obtained. Still there is a scope of improvement through adjustments and variations into various parameters of proposed non-parametric approach.","PeriodicalId":282429,"journal":{"name":"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCDW45521.2020.9318718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Images caught in darker area builds complexities in handling and removing essential data. Improvement of such pictures encourages us to recover significant information. ANN based error back propagation (BP) algorithm is used for enhancing shadow region of an image. Dataset used in this paper is a shadow image with its enhanced output (log transformed), so that model will be able to learn to enhance the shadow region of any given image. Darker locale in an image are successfully reduced in the results obtained. Still there is a scope of improvement through adjustments and variations into various parameters of proposed non-parametric approach.
图像中较暗部分增强的非参数方法
在较暗区域捕获的图像在处理和删除重要数据时增加了复杂性。这些图片的改进鼓励我们恢复重要的信息。采用基于人工神经网络的误差反向传播(BP)算法增强图像的阴影区域。本文使用的数据集是带有增强输出(对数变换)的阴影图像,因此模型将能够学习增强任意给定图像的阴影区域。在得到的结果中成功地减少了图像中的较暗区域。仍然存在通过调整和变化到提出的非参数方法的各种参数的改进范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信