Hardware implementation of arithmetic for elliptic curve cryptosystems over GF(2m)

M. Amara, Amar Siad
{"title":"Hardware implementation of arithmetic for elliptic curve cryptosystems over GF(2m)","authors":"M. Amara, Amar Siad","doi":"10.1109/WORLDCIS17046.2011.5749886","DOIUrl":null,"url":null,"abstract":"The Elliptic Curve Cryptography covers all relevant asymmetric cryptographic primitives like digital signatures and key agreement algorithms. In the present work, we develop a design of elliptic curve operations over binary Fields GF(2m). The function used for this purpose is the scalar multiplication kP which is the core operation of ECCs. Where k is an integer and P is a point on an elliptic curve. The EC Point multiplication processor defined in affine coordinates is achieved by using a dedicated Galois Field arithmetic implemented on FPGA using VHDL language.","PeriodicalId":204568,"journal":{"name":"2011 World Congress on Internet Security (WorldCIS-2011)","volume":"296 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 World Congress on Internet Security (WorldCIS-2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORLDCIS17046.2011.5749886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The Elliptic Curve Cryptography covers all relevant asymmetric cryptographic primitives like digital signatures and key agreement algorithms. In the present work, we develop a design of elliptic curve operations over binary Fields GF(2m). The function used for this purpose is the scalar multiplication kP which is the core operation of ECCs. Where k is an integer and P is a point on an elliptic curve. The EC Point multiplication processor defined in affine coordinates is achieved by using a dedicated Galois Field arithmetic implemented on FPGA using VHDL language.
GF(2m)上椭圆曲线密码系统算法的硬件实现
椭圆曲线密码学涵盖了所有相关的非对称密码学原语,如数字签名和密钥协议算法。本文提出了一种二元域GF(2m)上椭圆曲线运算的设计方法。用于此目的的函数是标量乘法kP,它是ecc的核心操作。k是一个整数,P是椭圆曲线上的一个点。用VHDL语言在FPGA上实现了专用伽罗瓦域算法,实现了仿射坐标下的EC点乘法处理器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信