Stochastic Optimization for Market Return Prediction Using Financial Knowledge Graph

Xiaoyi Fu, Xinqi Ren, O. Mengshoel, Xindong Wu
{"title":"Stochastic Optimization for Market Return Prediction Using Financial Knowledge Graph","authors":"Xiaoyi Fu, Xinqi Ren, O. Mengshoel, Xindong Wu","doi":"10.1109/ICBK.2018.00012","DOIUrl":null,"url":null,"abstract":"Interactive prediction of financial instrument returns is important. It is needed for asset managers to generate trading strategies as well as for stock exchange regulators to discover pricing anomalies. In this paper, we introduce an integrated stochastic optimization technique, namely genetic programming (GP) with generalized crowding (GC), GP+GC, as an integrated approach for a market return prediction system, using a financial knowledge graph (KG). On the one hand, using time-series data for twenty-nine component stocks of the Dow Jones industrial average, we show that our stochastic local search method can give a better prediction performance by providing a comparison of its return performances with two traditional benchmarks, namely a Buy & Hold strategy and the Moving Average Convergence Divergence (MACD) technical indicator. On the other hand, we use features extracted from a time-evolving knowledge graph constructed from fifty component stocks of the SSE50 Index. These features are used to a GP variant and then incorporate the knowledge extracted from the expression learnt from GP into a KG. Overall, this work demonstrates how to integrate GP+GC with KGs in a powerful manner.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Interactive prediction of financial instrument returns is important. It is needed for asset managers to generate trading strategies as well as for stock exchange regulators to discover pricing anomalies. In this paper, we introduce an integrated stochastic optimization technique, namely genetic programming (GP) with generalized crowding (GC), GP+GC, as an integrated approach for a market return prediction system, using a financial knowledge graph (KG). On the one hand, using time-series data for twenty-nine component stocks of the Dow Jones industrial average, we show that our stochastic local search method can give a better prediction performance by providing a comparison of its return performances with two traditional benchmarks, namely a Buy & Hold strategy and the Moving Average Convergence Divergence (MACD) technical indicator. On the other hand, we use features extracted from a time-evolving knowledge graph constructed from fifty component stocks of the SSE50 Index. These features are used to a GP variant and then incorporate the knowledge extracted from the expression learnt from GP into a KG. Overall, this work demonstrates how to integrate GP+GC with KGs in a powerful manner.
基于金融知识图的市场收益预测随机优化
金融工具收益的交互式预测是重要的。资产管理公司需要它来制定交易策略,证券交易所监管机构也需要它来发现定价异常。本文介绍了一种集成的随机优化技术,即遗传规划(GP)与广义拥挤(GC), GP+GC,作为一种基于金融知识图(KG)的市场收益预测系统的集成方法。一方面,我们利用道琼斯工业平均指数29只成分股的时间序列数据,通过将其收益表现与两种传统基准(即买入并持有策略和移动平均收敛发散(MACD)技术指标)进行比较,表明我们的随机局部搜索方法可以提供更好的预测效果。另一方面,我们使用从SSE50指数的50只成分股构建的时间演进知识图中提取的特征。将这些特征用于GP变体,然后将从GP学习到的表达式中提取的知识合并到KG中。总的来说,这项工作演示了如何以强大的方式将GP+GC与KGs集成在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信