Cross-Dictionary Linking at Sense Level with a Double-Layer Classifier

R. Saurí, Louis Mahon, Irene Russo, Mironas Bitinis
{"title":"Cross-Dictionary Linking at Sense Level with a Double-Layer Classifier","authors":"R. Saurí, Louis Mahon, Irene Russo, Mironas Bitinis","doi":"10.4230/OASIcs.LDK.2019.20","DOIUrl":null,"url":null,"abstract":"We present a system for linking dictionaries at the sense level, which is part of a wider programme aiming to extend current lexical resources and to create new ones by automatic means. One of the main challenges of the sense linking task is the existence of non one-to-one mappings among senses. Our system handles this issue by addressing the task as a binary classification problem using standard Machine Learning methods, where each sense pair is classified independently from the others. In addition, it implements a second, statistically-based classification layer to also model the dependence existing among sense pairs, namely, the fact that a sense in one dictionary that is already linked to a sense in the other dictionary has a lower probability of being linked to a further sense. The resulting double-layer classifier achieves global Precision and Recall scores of 0.91 and 0.80, respectively. 2012 ACM Subject Classification Computing methodologies→ Lexical semantics; Computing methodologies → Language resources; Computing methodologies → Supervised learning by classification","PeriodicalId":377119,"journal":{"name":"International Conference on Language, Data, and Knowledge","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Language, Data, and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.LDK.2019.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a system for linking dictionaries at the sense level, which is part of a wider programme aiming to extend current lexical resources and to create new ones by automatic means. One of the main challenges of the sense linking task is the existence of non one-to-one mappings among senses. Our system handles this issue by addressing the task as a binary classification problem using standard Machine Learning methods, where each sense pair is classified independently from the others. In addition, it implements a second, statistically-based classification layer to also model the dependence existing among sense pairs, namely, the fact that a sense in one dictionary that is already linked to a sense in the other dictionary has a lower probability of being linked to a further sense. The resulting double-layer classifier achieves global Precision and Recall scores of 0.91 and 0.80, respectively. 2012 ACM Subject Classification Computing methodologies→ Lexical semantics; Computing methodologies → Language resources; Computing methodologies → Supervised learning by classification
基于双层分类器的语义级跨词典链接
我们提出了一个在语义层面上连接词典的系统,这是一个更广泛的计划的一部分,旨在扩展当前的词汇资源,并通过自动手段创建新的词汇资源。感官连接任务的主要挑战之一是感官之间存在非一对一的映射。我们的系统通过使用标准机器学习方法将任务解决为二元分类问题来处理这个问题,其中每个感觉对都独立于其他感觉对进行分类。此外,它还实现了第二个基于统计的分类层,对词义对之间存在的依赖性进行建模,也就是说,一个字典中的一个词义如果已经与另一个字典中的一个词义相关联,那么它与另一个词义相关联的概率就更低。所得到的双层分类器的全局Precision和Recall分数分别为0.91和0.80。2012 ACM主题分类计算方法→词汇语义;计算方法→语言资源;计算方法→分类监督学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信