Novelty Detection Based on Genuine Normal and Artificially Generated Novelty Examples

George G. Cabral, Adriano Oliveira
{"title":"Novelty Detection Based on Genuine Normal and Artificially Generated Novelty Examples","authors":"George G. Cabral, Adriano Oliveira","doi":"10.1109/BRACIS.2016.065","DOIUrl":null,"url":null,"abstract":"One-class classification (OCC) is an important problem with applications in several different areas such as outlier detection and machine monitoring. Since in OCC there are no examples of the novelty class, the description generated may be a tight or a bulky description. Both cases are undesirable. In order to create a proper description, the presence of examples of the novelty class is very important. However, such examples may be rare or absent during the modeling phase. In these cases, the artificial generation of novelty samples may overcome this limitation. In this work it is proposed a two steps approach for generating artificial novelty examples in order to guide the parameter optimization process. The results show that the adopted approach has shown to be competitive with the results achieved when using real (genuine) novelty samples.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One-class classification (OCC) is an important problem with applications in several different areas such as outlier detection and machine monitoring. Since in OCC there are no examples of the novelty class, the description generated may be a tight or a bulky description. Both cases are undesirable. In order to create a proper description, the presence of examples of the novelty class is very important. However, such examples may be rare or absent during the modeling phase. In these cases, the artificial generation of novelty samples may overcome this limitation. In this work it is proposed a two steps approach for generating artificial novelty examples in order to guide the parameter optimization process. The results show that the adopted approach has shown to be competitive with the results achieved when using real (genuine) novelty samples.
基于真实常态和人工生成新颖性样本的新颖性检测
单类分类(OCC)是一个重要的问题,在异常值检测和机器监控等不同领域都有应用。由于在OCC中没有新颖性类的示例,因此生成的描述可能是紧凑的或庞大的描述。这两种情况都是不可取的。为了创建一个适当的描述,新颖性类的例子的存在是非常重要的。然而,在建模阶段,这样的例子可能很少或不存在。在这些情况下,人工生成新颖性样本可以克服这一限制。本文提出了一种两步生成人工新颖性样例的方法,以指导参数优化过程。结果表明,所采用的方法与使用真实(真正)新颖性样本时获得的结果具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信