H. Wang, Shih-Hian Huang, Ching-Wei Tsai, Hsien-Hsin Lin, Tze-Liang Lee, Shih-Chang Chen, C. H. Diaz, M. Liang, J. Sun
{"title":"High-Performance PMOS Devices on (110)/<111'> Substrate/Channel with Multiple Stressors","authors":"H. Wang, Shih-Hian Huang, Ching-Wei Tsai, Hsien-Hsin Lin, Tze-Liang Lee, Shih-Chang Chen, C. H. Diaz, M. Liang, J. Sun","doi":"10.1109/IEDM.2006.346960","DOIUrl":null,"url":null,"abstract":"A study was performed to investigate the effect of multiple stressors on CMOS devices on (110) and (100) substrates with different channel directions. For the first time, 87% ION-IOFF improvement is achieved by utilizing SiGe-S/D and compressive contact etch stop layer (c-CESL) for PMOS devices on (110) substrate with lang111'rang channel direction. The improvement is similar to that on conventional (100) substrate with lang110>rangchannel direction and can be explained by piezoresistive coefficients. Record PMOS device performance of Ion = 900 muA/mum at Ioff = 100 nA/mum and VDD = 1.0V for 40nm gate length is demonstrated","PeriodicalId":366359,"journal":{"name":"2006 International Electron Devices Meeting","volume":"130 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2006.346960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A study was performed to investigate the effect of multiple stressors on CMOS devices on (110) and (100) substrates with different channel directions. For the first time, 87% ION-IOFF improvement is achieved by utilizing SiGe-S/D and compressive contact etch stop layer (c-CESL) for PMOS devices on (110) substrate with lang111'rang channel direction. The improvement is similar to that on conventional (100) substrate with lang110>rangchannel direction and can be explained by piezoresistive coefficients. Record PMOS device performance of Ion = 900 muA/mum at Ioff = 100 nA/mum and VDD = 1.0V for 40nm gate length is demonstrated